In this work, the Nb-14Si 24Ti-10Cr-2Al-2Hf-0.1Y alloy (at.%) was processed by the liquid-metal-cooled directional solidification (DS) at 1750 ℃ with withdrawal rates of 1.2, 6, 18 mm/min and post heat treatment ...In this work, the Nb-14Si 24Ti-10Cr-2Al-2Hf-0.1Y alloy (at.%) was processed by the liquid-metal-cooled directional solidification (DS) at 1750 ℃ with withdrawal rates of 1.2, 6, 18 mm/min and post heat treatment (HT) at 1450 ℃ for 10 h. The microstructures of the direction- ally solidified and heat treated samples were investigated. The results show that the microstructure of directionally solidified alloy mainly consists of petaloid Nbss + Nb5Si3 eutectics and Ti-rich Nbss + Nb5Si3 + Cr2Nb eutectics. With the increase of withdrawal rate, the primary NbsSi3 is eliminated, Nbss + Nb5Si3 eutectic cells turn round and connected with the microstructure refine- ment and Nbss + Nb5Si3 + CrzNb eutectics turn to a river-like morphology. After heat treatment, Nbss + Nb5Si3 + Cr2Nb eutectics disappeared and petaloid Nbss + Nb5Si3 eutectics turn to a spe- cific fiber-mesh structure gradually, which is promoted by higher withdrawal rates. Furthermore, both the volume fraction of Cr2Nb and the content of Cr in Nbss of Nbss + Nb5Si3 eutectics change regularly with the increase of withdrawal rate and heat treatment at 1450 ℃ for 10 h.展开更多
基金supported by National Natural Science Foundation of China (No. 51101005)
文摘In this work, the Nb-14Si 24Ti-10Cr-2Al-2Hf-0.1Y alloy (at.%) was processed by the liquid-metal-cooled directional solidification (DS) at 1750 ℃ with withdrawal rates of 1.2, 6, 18 mm/min and post heat treatment (HT) at 1450 ℃ for 10 h. The microstructures of the direction- ally solidified and heat treated samples were investigated. The results show that the microstructure of directionally solidified alloy mainly consists of petaloid Nbss + Nb5Si3 eutectics and Ti-rich Nbss + Nb5Si3 + Cr2Nb eutectics. With the increase of withdrawal rate, the primary NbsSi3 is eliminated, Nbss + Nb5Si3 eutectic cells turn round and connected with the microstructure refine- ment and Nbss + Nb5Si3 + CrzNb eutectics turn to a river-like morphology. After heat treatment, Nbss + Nb5Si3 + Cr2Nb eutectics disappeared and petaloid Nbss + Nb5Si3 eutectics turn to a spe- cific fiber-mesh structure gradually, which is promoted by higher withdrawal rates. Furthermore, both the volume fraction of Cr2Nb and the content of Cr in Nbss of Nbss + Nb5Si3 eutectics change regularly with the increase of withdrawal rate and heat treatment at 1450 ℃ for 10 h.