针对Video Block-Matching and 3-D Filtering(VBM3D)算法耗时高且去噪视频存在块效应的问题进行了改进。在对变换域系数进行收缩时,采用连续阶导数阈值法,代替原算法中的硬阈值法,减少块效应;在帧内匹配时,采用基于积分图思想的图像块...针对Video Block-Matching and 3-D Filtering(VBM3D)算法耗时高且去噪视频存在块效应的问题进行了改进。在对变换域系数进行收缩时,采用连续阶导数阈值法,代替原算法中的硬阈值法,减少块效应;在帧内匹配时,采用基于积分图思想的图像块距离计算加速方法;在帧间匹配时,使用帧间预测性匹配方法,减少计算量,提高算法效率。理论分析和实验结果表明,改进后的算法不仅能有效改善原VBM3D算法中的块效应,且算法复杂度大大降低。展开更多
Block matching based 3D filtering methods have achieved great success in image denoising tasks. However the manually set filtering operation could not well describe a good model to transform noisy images to clean imag...Block matching based 3D filtering methods have achieved great success in image denoising tasks. However the manually set filtering operation could not well describe a good model to transform noisy images to clean images. In this paper, we introduce convolutional neural network (CNN) for the 3D filtering step to learn a well fitted model for denoising. With a trainable model, prior knowledge is utilized for better mapping from noisy images to clean images. This block matching and CNN joint model (BMCNN) could denoise images with different sizes and different noise intensity well, especially images with high noise levels. The experimental results demonstrate that among all competing methods, this method achieves the highest peak signal to noise ratio (PSNR) when denoising images with high noise levels (σ 〉 40), and the best visual quality when denoising images with all the tested noise levels.展开更多
文摘针对Video Block-Matching and 3-D Filtering(VBM3D)算法耗时高且去噪视频存在块效应的问题进行了改进。在对变换域系数进行收缩时,采用连续阶导数阈值法,代替原算法中的硬阈值法,减少块效应;在帧内匹配时,采用基于积分图思想的图像块距离计算加速方法;在帧间匹配时,使用帧间预测性匹配方法,减少计算量,提高算法效率。理论分析和实验结果表明,改进后的算法不仅能有效改善原VBM3D算法中的块效应,且算法复杂度大大降低。
基金This research was supported by the National Natural Science Foundation of China under Grant Nos. 61573380 and 61672542, and Fundamental Research Funds for the Central Universities of China under Grant No. 2016zzts055.
文摘Block matching based 3D filtering methods have achieved great success in image denoising tasks. However the manually set filtering operation could not well describe a good model to transform noisy images to clean images. In this paper, we introduce convolutional neural network (CNN) for the 3D filtering step to learn a well fitted model for denoising. With a trainable model, prior knowledge is utilized for better mapping from noisy images to clean images. This block matching and CNN joint model (BMCNN) could denoise images with different sizes and different noise intensity well, especially images with high noise levels. The experimental results demonstrate that among all competing methods, this method achieves the highest peak signal to noise ratio (PSNR) when denoising images with high noise levels (σ 〉 40), and the best visual quality when denoising images with all the tested noise levels.