14-3-3 is a highly conserved acidic protein family, composed of seven isoforms in mammals. 14-3-3 protein caninteract with over 200 target proteins by phosphoserine-dependent and phosphoserine-independent manners. Lit...14-3-3 is a highly conserved acidic protein family, composed of seven isoforms in mammals. 14-3-3 protein caninteract with over 200 target proteins by phosphoserine-dependent and phosphoserine-independent manners. Little isknown about the consequences of these interactions, and thus are the subjects of ongoing studies. 14-3-3 controls cellcycle, cell growth, differentiation, survival, apoptosis, migration and spreading. Recent studies have revealed newmechanisms and new functions of 14-3-3, giving us more insights on this fascinating and complex family of proteins.Of all the seven isoforms, 14-3-3σ seems to be directly involved in human cancer. 14-3-3σ itself is subject to regulationby p53 upon DNA damage and by epigenetic deregulation. Gene silencing of 14-3-3σ by CpG methylation has beenfound in many human cancer types. This suggests that therapy-targeting 14-3-3σ may be beneficial for future cancertreatment.展开更多
文摘14-3-3 is a highly conserved acidic protein family, composed of seven isoforms in mammals. 14-3-3 protein caninteract with over 200 target proteins by phosphoserine-dependent and phosphoserine-independent manners. Little isknown about the consequences of these interactions, and thus are the subjects of ongoing studies. 14-3-3 controls cellcycle, cell growth, differentiation, survival, apoptosis, migration and spreading. Recent studies have revealed newmechanisms and new functions of 14-3-3, giving us more insights on this fascinating and complex family of proteins.Of all the seven isoforms, 14-3-3σ seems to be directly involved in human cancer. 14-3-3σ itself is subject to regulationby p53 upon DNA damage and by epigenetic deregulation. Gene silencing of 14-3-3σ by CpG methylation has beenfound in many human cancer types. This suggests that therapy-targeting 14-3-3σ may be beneficial for future cancertreatment.