以2D-autocorrelation描述符为结构参数,采用PSO和逐步回归的方法进行变量筛选,再结合SVM等机器学习算法对28种苯丙烯盐类化合物对EBV-EA病毒的抑制性活性进行定量构效关系(QSAR)研究.研究结果表明,PSO-v-SVM模型具有最优的模型稳健性...以2D-autocorrelation描述符为结构参数,采用PSO和逐步回归的方法进行变量筛选,再结合SVM等机器学习算法对28种苯丙烯盐类化合物对EBV-EA病毒的抑制性活性进行定量构效关系(QSAR)研究.研究结果表明,PSO-v-SVM模型具有最优的模型稳健性和预测效果.由PSO选入的构成该模型的5个2D-autocorrelation描述符为ATS5v,ATS6e,ATS8e,ATS3p,GATS5p;该模型对训练集的拟合和留一法交叉验证结果的相关系数R^2和q_(cv)~2分别为0.986和0.930,对测试集预测结果的相关系数R^2_(ext)达0.955.对5个变量的理化意义的分析表明,极化率、Van der Waals体积和电负性对苯丙烯盐类化合物的抑制性活性影响分别约占57.13%、15.90%和26.97%.展开更多
文摘以2D-autocorrelation描述符为结构参数,采用PSO和逐步回归的方法进行变量筛选,再结合SVM等机器学习算法对28种苯丙烯盐类化合物对EBV-EA病毒的抑制性活性进行定量构效关系(QSAR)研究.研究结果表明,PSO-v-SVM模型具有最优的模型稳健性和预测效果.由PSO选入的构成该模型的5个2D-autocorrelation描述符为ATS5v,ATS6e,ATS8e,ATS3p,GATS5p;该模型对训练集的拟合和留一法交叉验证结果的相关系数R^2和q_(cv)~2分别为0.986和0.930,对测试集预测结果的相关系数R^2_(ext)达0.955.对5个变量的理化意义的分析表明,极化率、Van der Waals体积和电负性对苯丙烯盐类化合物的抑制性活性影响分别约占57.13%、15.90%和26.97%.