期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The 2-pebbling Property for Dense Graphs
1
作者 Ze Tu GAO Jian Hua YIN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第3期557-570,共14页
Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The pebbling number f(G) is the small... Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The pebbling number f(G) is the smallest number m such that for every distribution of m pebbles and every vertex v, a pebble can be moved to v. A graph G is said to have the 2-pebbling property if for any distribution with more than 2f(G) - q pebbles, where q is the number of vertices with at least one pebble, it is possible, using pebbling moves, to get two pebbles to any vertex. Snevily conjectured that G(s, t) has the 2- pebbling property, where G(s, t) is a bipartite graph with partite sets of size s and t (s 〉 t). Similarly, the ~,pebbling number fl(G) is the smallest number m such that for every distribution of m pebbles and every vertex v, ~ pebbles can be moved to v. Herscovici et al. conjectured that fl(G) ≤ 1.5n + 8l -- 6 for the graph G with diameter 3, where n = IV(G)I. In this paper, we prove that if s ≥ 15 and G(s,t) 展开更多
关键词 pebbling number 2-pebbling property bipartite graph
原文传递
C_5的刺图的Pebbling数和2-Pebbling性质
2
作者 郝冬林 尹建华 《海南大学学报(自然科学版)》 CAS 2011年第3期209-212,共4页
连通图G的Pebbling数f(G)是最小的整数n,使得不论n个Pebble如何放置在G的顶点上,总可以通过一系列的Pebbling移动把1个Pebble移到图G任意一个目标顶点上.其中,1个Pebbling移动是从一个顶点上移走2个Pebble,而把其中一个移到与其相邻的... 连通图G的Pebbling数f(G)是最小的整数n,使得不论n个Pebble如何放置在G的顶点上,总可以通过一系列的Pebbling移动把1个Pebble移到图G任意一个目标顶点上.其中,1个Pebbling移动是从一个顶点上移走2个Pebble,而把其中一个移到与其相邻的一个顶点上,获得了C5的刺图的Pebbling数,并证明其满足2-Pebbling性质. 展开更多
关键词 刺图 pebbling 2-pebbling性质
下载PDF
图的中间图2-pebbling性质和Graham猜想(英文)
3
作者 叶永升 史彩霞 张云 《数学杂志》 CSCD 北大核心 2015年第3期549-558,共10页
本文研究了图的2-pebbling性质和Graham猜想.利用图的pebbling数的一些结果,我们研究了路和圈的中间图具有2-pebbling性质,从而也证明了路的中间图满足Graham猜想.
关键词 GRAHAM猜想 中间图 2-pebbling性质
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部