Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus.Therefore,using these two treatme...Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus.Therefore,using these two treatments may help treat Parkinson's disease.To further investigate the mechanisms of action of these two compounds,we established a model of Parkinson's disease by treating mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and then subcutaneously injected them with the glucagon-like peptide-1 receptor agonist exendin-4 or the dipeptidyl peptidase 4 inhibitor linagliptin.We found that both exendin-4 and linagliptin reversed motor dysfunction,glial activation,and dopaminergic neuronal death in this model.In addition,both exendin-4 and linagliptin induced microglial polarization to the anti-inflammatory M2 phenotype and reduced pro-inflammatory cytokine secretion.Moreover,in vitro experiments showed that treatment with exendin-4 and linagliptin inhibited activation of the nucleotide-binding oligomerization domain-and leucine-rich-repeat-and pyrin-domaincontaining 3/caspase-1/interleukin-1βpathway and subsequent pyroptosis by decreasing the production of reactive oxygen species.These findings suggest that exendin-4 and linagliptin exert neuroprotective effects by attenuating neuroinflammation through regulation of microglial polarization and the nucleotidebinding oligomerization domain-and leucine-rich-repeat-and pyrin-domain-containing 3/caspase-1/interleukin-1βpathway in a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Therefore,these two drugs may serve as novel anti-inflammatory treatments for Parkinson's disease.展开更多
目的:探讨耐力训练对帕金森病(PD)模型小鼠中脑线粒体自噬的影响,揭示运动预防帕金森病的分子生物学机制。方法:10周龄雄性C57BL/6小鼠32只,随机分为安静组(C),运动组(E),帕金森模型安静组(P)及帕金森模型运动组(PE),每组8只。E组及PE...目的:探讨耐力训练对帕金森病(PD)模型小鼠中脑线粒体自噬的影响,揭示运动预防帕金森病的分子生物学机制。方法:10周龄雄性C57BL/6小鼠32只,随机分为安静组(C),运动组(E),帕金森模型安静组(P)及帕金森模型运动组(PE),每组8只。E组及PE组小鼠进行为期8周跑台耐力训练,跑台速度15m/min,坡度为0%,每天运动持续50min,每周6次,周日休息。训练结束后,P组和PE组小鼠腹腔注射MPTP(30mg/kg),C组和E组小鼠注射等量生理盐水,持续3d。注射结束1周后,处死各组小鼠,取双侧中脑及纹状体,采用实时PCR及Western blot技术检测线粒体自噬相关基因及TH蛋白表达,HPLC技术检测中脑及纹状体组织内DA含量。结果:与C组比,E组小鼠中脑TH蛋白上调(P<0.05),中脑及纹状体DA含量均增加(P<0.05),P组和PE组小鼠TH蛋白及DA含量均显著下降(P<0.01),而P组较PE组相应指标下降更明显(P<0.05)。与C组比,E组小鼠中脑PINK、PARK2 m RNA及PINK1蛋白表达上调(P<0.05),LC3Ⅱ/Ⅰ比值增加,P组小鼠PINK1m RNA表达下调(P<0.05),PE组小鼠PINK1 m RNA、Parkin蛋白含量及LC3Ⅱ/Ⅰ比值较P组增加。结论:为期3d的MPTP处理可导致小鼠中脑及纹状体TH及DA含量下降,诱导帕金森病发生,耐力训练可缓解这一现象;MPTP诱导的帕金森小鼠模型中脑线粒体自噬水平下降,而耐力训练可作用于线粒体自噬相关基因的表达,抑制MPTP的神经毒性作用。展开更多
Tp53, a stress response gene, is involved in diverse cell death pathways and its activation is implicated in the pathogenesis of Parkinson's disease. However, whether the neuronal Tp53 protein plays a direct role in ...Tp53, a stress response gene, is involved in diverse cell death pathways and its activation is implicated in the pathogenesis of Parkinson's disease. However, whether the neuronal Tp53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death or neuronal terminal damage in different neurotoxicant models is unknown. In our recent studies, in contrast to the global inhibition of Tp53 function by phar- macological inhibitors and in traditional Tp53 knock-out mice, we examined the effects of DA-specific Tp53 gene deletion after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and methamphetamine exposure. Our data suggests that the Tp53 gene might be involved in both neuronal apoptosis and neuronal termi- nal damage caused by different neurotoxicants. Additional results from other studies also suggest that as a master regulator of many pathways that regulate apoptosis and synaptic terminal damage, it is possible that Tp53 may function as a signaling hub to integrate different signaling pathways to mediate distinctive target pathways. Tp53 protein as a signaling hub might be able to evaluate the microenvironment of neurons, assess the forms and severities of injury incurred, and determine whether apoptotic cell death or neuro- nal terminal degeneration occurs. Identification of the precise mechanisms activated in distinct neuronal damage caused by different forms and severities of injuries might allow for development of specific Tp53 inhibitors or ways to modulate distinct downstream target pathways involved.展开更多
The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating m...The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81771271(to JF),31800898(to WL),81430025(to JYL),and U1801681(to JYL)Key Research and Development Program of Liaoning Province,No.2020JH2/10300047(to JF)+1 种基金the Key Field Research Development Program of Guangdong Province,No.2018B030337001(to JYL)the Outstanding Scientific Fund of Shengjing Hospital,No.M0475(to JF)。
文摘Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus.Therefore,using these two treatments may help treat Parkinson's disease.To further investigate the mechanisms of action of these two compounds,we established a model of Parkinson's disease by treating mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and then subcutaneously injected them with the glucagon-like peptide-1 receptor agonist exendin-4 or the dipeptidyl peptidase 4 inhibitor linagliptin.We found that both exendin-4 and linagliptin reversed motor dysfunction,glial activation,and dopaminergic neuronal death in this model.In addition,both exendin-4 and linagliptin induced microglial polarization to the anti-inflammatory M2 phenotype and reduced pro-inflammatory cytokine secretion.Moreover,in vitro experiments showed that treatment with exendin-4 and linagliptin inhibited activation of the nucleotide-binding oligomerization domain-and leucine-rich-repeat-and pyrin-domaincontaining 3/caspase-1/interleukin-1βpathway and subsequent pyroptosis by decreasing the production of reactive oxygen species.These findings suggest that exendin-4 and linagliptin exert neuroprotective effects by attenuating neuroinflammation through regulation of microglial polarization and the nucleotidebinding oligomerization domain-and leucine-rich-repeat-and pyrin-domain-containing 3/caspase-1/interleukin-1βpathway in a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Therefore,these two drugs may serve as novel anti-inflammatory treatments for Parkinson's disease.
文摘目的:探讨耐力训练对帕金森病(PD)模型小鼠中脑线粒体自噬的影响,揭示运动预防帕金森病的分子生物学机制。方法:10周龄雄性C57BL/6小鼠32只,随机分为安静组(C),运动组(E),帕金森模型安静组(P)及帕金森模型运动组(PE),每组8只。E组及PE组小鼠进行为期8周跑台耐力训练,跑台速度15m/min,坡度为0%,每天运动持续50min,每周6次,周日休息。训练结束后,P组和PE组小鼠腹腔注射MPTP(30mg/kg),C组和E组小鼠注射等量生理盐水,持续3d。注射结束1周后,处死各组小鼠,取双侧中脑及纹状体,采用实时PCR及Western blot技术检测线粒体自噬相关基因及TH蛋白表达,HPLC技术检测中脑及纹状体组织内DA含量。结果:与C组比,E组小鼠中脑TH蛋白上调(P<0.05),中脑及纹状体DA含量均增加(P<0.05),P组和PE组小鼠TH蛋白及DA含量均显著下降(P<0.01),而P组较PE组相应指标下降更明显(P<0.05)。与C组比,E组小鼠中脑PINK、PARK2 m RNA及PINK1蛋白表达上调(P<0.05),LC3Ⅱ/Ⅰ比值增加,P组小鼠PINK1m RNA表达下调(P<0.05),PE组小鼠PINK1 m RNA、Parkin蛋白含量及LC3Ⅱ/Ⅰ比值较P组增加。结论:为期3d的MPTP处理可导致小鼠中脑及纹状体TH及DA含量下降,诱导帕金森病发生,耐力训练可缓解这一现象;MPTP诱导的帕金森小鼠模型中脑线粒体自噬水平下降,而耐力训练可作用于线粒体自噬相关基因的表达,抑制MPTP的神经毒性作用。
文摘Tp53, a stress response gene, is involved in diverse cell death pathways and its activation is implicated in the pathogenesis of Parkinson's disease. However, whether the neuronal Tp53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death or neuronal terminal damage in different neurotoxicant models is unknown. In our recent studies, in contrast to the global inhibition of Tp53 function by phar- macological inhibitors and in traditional Tp53 knock-out mice, we examined the effects of DA-specific Tp53 gene deletion after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and methamphetamine exposure. Our data suggests that the Tp53 gene might be involved in both neuronal apoptosis and neuronal termi- nal damage caused by different neurotoxicants. Additional results from other studies also suggest that as a master regulator of many pathways that regulate apoptosis and synaptic terminal damage, it is possible that Tp53 may function as a signaling hub to integrate different signaling pathways to mediate distinctive target pathways. Tp53 protein as a signaling hub might be able to evaluate the microenvironment of neurons, assess the forms and severities of injury incurred, and determine whether apoptotic cell death or neuro- nal terminal degeneration occurs. Identification of the precise mechanisms activated in distinct neuronal damage caused by different forms and severities of injuries might allow for development of specific Tp53 inhibitors or ways to modulate distinct downstream target pathways involved.
基金funded by Coordination for the Improvement of Higher Education Personnel (CAPES,Brazil-Finance Code 001,to LRB)the S?o Paulo Research Foundation(FAPESP,Brazil,project#2018/07366-4)+1 种基金The National Council for Scientific and Technological Development (CNPq,Brazil,project#303006/2018-8,to LRB)a PhD fellowship from FAPESP under Grant Agreement No 2020/02109-3。
文摘The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.