This paper deals with the blow-up properties of the solution to a semilinear parabolic system with localized nonlinear reaction terms, subject to the null Dirichlet boundary condition. We first give sufficient conditi...This paper deals with the blow-up properties of the solution to a semilinear parabolic system with localized nonlinear reaction terms, subject to the null Dirichlet boundary condition. We first give sufficient conditions for that the classical solution blows up in the finite time, secondly give necessary conditions and a sufficient condition for that two components blow up simultaneously, and then obtain the uniform blow-up profiles in the interior. Finally we describe the asymptotic behavior of the blow-up solution in the boundary layer.展开更多
This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solu...This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.展开更多
The existence and uniqueness of the global smooth solution to the initial-boundary valueproblem of a system of multi-dimensions SRWE are proved. The sufficient conditions of 'blowingup' of the solution are given.
文摘This paper deals with the blow-up properties of the solution to a semilinear parabolic system with localized nonlinear reaction terms, subject to the null Dirichlet boundary condition. We first give sufficient conditions for that the classical solution blows up in the finite time, secondly give necessary conditions and a sufficient condition for that two components blow up simultaneously, and then obtain the uniform blow-up profiles in the interior. Finally we describe the asymptotic behavior of the blow-up solution in the boundary layer.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos.10471013,10471022)the Ministry of Education of China Science and Technology Major Projects (Grant No.104090)
文摘This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.
文摘The existence and uniqueness of the global smooth solution to the initial-boundary valueproblem of a system of multi-dimensions SRWE are proved. The sufficient conditions of 'blowingup' of the solution are given.