The catchment of South Luohe River in Central China is an important region for investigating modern pollen-environment relationship, because it is located in the transitional zone between south and north China, an env...The catchment of South Luohe River in Central China is an important region for investigating modern pollen-environment relationship, because it is located in the transitional zone between south and north China, an environment which is sensitive to climate changes. In this study, 40 surface samples under ten vegetation types were collected to reveal the relationship between pollen assemblages and vegetation. The results show that the surface pollen assemblages reflect the vegetation quite well. In forest topsoils, the average of arbo- real pollen content is greater than 40%, and the Selaginella sinensis spore is high. As to sparse forest grassland and shrub community, the average arboreal pollen is 13.2% and 16.6% respectively, and the shrub pollen is relatively higher than that of grassland samples. The grassland and farmland are characterized by low percentage of tree and shrub pollen (〈10% and 〈1%), and high percentage of herbs (〉80%). Pinus, Quercus and some other arboreal pollen can indicate the regional vegetation because of their dispersal ability. Quercus pollen is under-representative and so is Pinus. Artemisia pollen is significantly over-represented, has poor correlation with the plant coverage, and may reflect human dis- turbance. Gramineae can indicate plant quite well, but with low representation. High content of Chenopodiaceae probably suggests human impact. Predominant Selaginella sinensis can be used as an indicator of forest environment. Cluster analysis and principal components analysis of pollen assemblages can distinguish forest and non-forest vegetation well. The former method is better at separating pine and mixed forests, while the latter is more stable and could better differentiate farmland and other non-forest area. The first axis of PCA mainly reflects the humidity.展开更多
A 61-kb biosynthetic gene cluster(BGC),which is accountable for the biosynthesis of hibarimicin(HBM)B from Microbispora rosea subsp.hibaria TP-A0121,was heterologously expressed in Streptomyces coelicolor M1154,which ...A 61-kb biosynthetic gene cluster(BGC),which is accountable for the biosynthesis of hibarimicin(HBM)B from Microbispora rosea subsp.hibaria TP-A0121,was heterologously expressed in Streptomyces coelicolor M1154,which generated a trace of the target products but accumulated a large amount of shunt products.Based on rational analysis of the relevant secondary metabolism,directed engineering of the biosynthetic pathways resulted in the high production of HBM B,as well as new HBM derivates with improved antitumor activity.These results not only establish a biosynthetic system to effectively synthesize HBMs-a class of the largest and most complex Type-Ⅱpolyketides,with a unique pseudo-dimeric structure-but also set the stage for further engineering and deep investigation of this complex biosynthetic pathway toward potent anticancer drugs.展开更多
基金Foundation: National Natural Science Foundation of China, No.41072122, No.40930103, No.41321062 The "Strategic Priority Research Program" of CAS, No.XDA05120704, No.XDA05130201
文摘The catchment of South Luohe River in Central China is an important region for investigating modern pollen-environment relationship, because it is located in the transitional zone between south and north China, an environment which is sensitive to climate changes. In this study, 40 surface samples under ten vegetation types were collected to reveal the relationship between pollen assemblages and vegetation. The results show that the surface pollen assemblages reflect the vegetation quite well. In forest topsoils, the average of arbo- real pollen content is greater than 40%, and the Selaginella sinensis spore is high. As to sparse forest grassland and shrub community, the average arboreal pollen is 13.2% and 16.6% respectively, and the shrub pollen is relatively higher than that of grassland samples. The grassland and farmland are characterized by low percentage of tree and shrub pollen (〈10% and 〈1%), and high percentage of herbs (〉80%). Pinus, Quercus and some other arboreal pollen can indicate the regional vegetation because of their dispersal ability. Quercus pollen is under-representative and so is Pinus. Artemisia pollen is significantly over-represented, has poor correlation with the plant coverage, and may reflect human dis- turbance. Gramineae can indicate plant quite well, but with low representation. High content of Chenopodiaceae probably suggests human impact. Predominant Selaginella sinensis can be used as an indicator of forest environment. Cluster analysis and principal components analysis of pollen assemblages can distinguish forest and non-forest vegetation well. The former method is better at separating pine and mixed forests, while the latter is more stable and could better differentiate farmland and other non-forest area. The first axis of PCA mainly reflects the humidity.
基金supported in part by grants from the National Key Research and Development Program of China(2018YFA0901900)the National Natural Science Foundation of China(22137009)the China Postdoctoral Science Foundation(2020M671271).
文摘A 61-kb biosynthetic gene cluster(BGC),which is accountable for the biosynthesis of hibarimicin(HBM)B from Microbispora rosea subsp.hibaria TP-A0121,was heterologously expressed in Streptomyces coelicolor M1154,which generated a trace of the target products but accumulated a large amount of shunt products.Based on rational analysis of the relevant secondary metabolism,directed engineering of the biosynthetic pathways resulted in the high production of HBM B,as well as new HBM derivates with improved antitumor activity.These results not only establish a biosynthetic system to effectively synthesize HBMs-a class of the largest and most complex Type-Ⅱpolyketides,with a unique pseudo-dimeric structure-but also set the stage for further engineering and deep investigation of this complex biosynthetic pathway toward potent anticancer drugs.