The Major Research Program "Deep Sea Processes and Evolution of the South China Sea", or "The South China Sea Deep", launched in January 2011 by the National Natural Science Foundation of China, is...The Major Research Program "Deep Sea Processes and Evolution of the South China Sea", or "The South China Sea Deep", launched in January 2011 by the National Natural Science Foundation of China, is the first large-scale basic-research program in ocean science in the country aiming to reconstruct the life history of a marginal sea. The overall scientific objective of the program is to dissect this typical marginal sea by studying its history of evolution and its modern processes, including the following three major components:(1) Development of the deep basin:utilizing new techniques to re-measure magnetic anomaly lineations, to explore the deep tectonic features, to drill the oceanic crust, and to study volcanic seamount chains; (2) deep-water sediments: observing the modern processes to reveal the patterns of deep-water circulations and sedimentation, analyzing deep-sea sediments to recognize paleoceanographic response to basin evolution, and subsequently to bridge the modern and paleo-studies of the deep-sea processes; and (3) biogeochemical processes:using a variety of techniques including deploying submarine observation and deep-water diving device to investigate the distribution patterns and environmental impacts of deepwater seepages and sub-bottom circulation, and to reveal the role of microbes in deep-sea carbon cycling. As compared with the open ocean and other marginal seas, the South China Sea enjoys many more advantages as a marine basin for reconstructing the life history. Meanwhile, the South China Sea Deep Program provides unique opportunities in studying the evolution and variations of the sea-land interactions between the Pacific and Asia.展开更多
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East C...A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre展开更多
基金supported by the National Natural Science Foundation of China (91128000)the National Basic Research Program of China (2007CB815902)
文摘The Major Research Program "Deep Sea Processes and Evolution of the South China Sea", or "The South China Sea Deep", launched in January 2011 by the National Natural Science Foundation of China, is the first large-scale basic-research program in ocean science in the country aiming to reconstruct the life history of a marginal sea. The overall scientific objective of the program is to dissect this typical marginal sea by studying its history of evolution and its modern processes, including the following three major components:(1) Development of the deep basin:utilizing new techniques to re-measure magnetic anomaly lineations, to explore the deep tectonic features, to drill the oceanic crust, and to study volcanic seamount chains; (2) deep-water sediments: observing the modern processes to reveal the patterns of deep-water circulations and sedimentation, analyzing deep-sea sediments to recognize paleoceanographic response to basin evolution, and subsequently to bridge the modern and paleo-studies of the deep-sea processes; and (3) biogeochemical processes:using a variety of techniques including deploying submarine observation and deep-water diving device to investigate the distribution patterns and environmental impacts of deepwater seepages and sub-bottom circulation, and to reveal the role of microbes in deep-sea carbon cycling. As compared with the open ocean and other marginal seas, the South China Sea enjoys many more advantages as a marine basin for reconstructing the life history. Meanwhile, the South China Sea Deep Program provides unique opportunities in studying the evolution and variations of the sea-land interactions between the Pacific and Asia.
基金This study was supported by the Major State Basic Research Program under contract Grant No. 19990 43806'
文摘A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre