针对复杂室内环境下超宽带(Ultra WideBand,UWB)信号传播的非视距(Non Line Of Sight,NLOS)误差问题,本文提出了一种基于无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的环境自适应UWB/DR室内定位方法.该方法通过建立自适应UKF滤波模型,...针对复杂室内环境下超宽带(Ultra WideBand,UWB)信号传播的非视距(Non Line Of Sight,NLOS)误差问题,本文提出了一种基于无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的环境自适应UWB/DR室内定位方法.该方法通过建立自适应UKF滤波模型,将UWB定位信息和航迹推算(Dead Reckoning,DR)定位信息进行融合.依据新息和高斯分布的3σ原则来对UWB定位结果进行非视距检测,再通过新息的实时估计协方差和理论协方差来构建环境适应系数,进而用此系数动态修正UWB定位的观测噪声,使得观测噪声自适应真实环境,降低NLOS误差对融合定位结果的影响.实验结果表明,该方法能有效减小UWB定位的NLOS误差,并且由于环境适应系数的创新引入,比UKF定位和粒子滤波定位(Particle Filtering,PF)有更高的定位精度和更强的抗NLOS误差性能.展开更多
文摘针对复杂室内环境下超宽带(Ultra WideBand,UWB)信号传播的非视距(Non Line Of Sight,NLOS)误差问题,本文提出了一种基于无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的环境自适应UWB/DR室内定位方法.该方法通过建立自适应UKF滤波模型,将UWB定位信息和航迹推算(Dead Reckoning,DR)定位信息进行融合.依据新息和高斯分布的3σ原则来对UWB定位结果进行非视距检测,再通过新息的实时估计协方差和理论协方差来构建环境适应系数,进而用此系数动态修正UWB定位的观测噪声,使得观测噪声自适应真实环境,降低NLOS误差对融合定位结果的影响.实验结果表明,该方法能有效减小UWB定位的NLOS误差,并且由于环境适应系数的创新引入,比UKF定位和粒子滤波定位(Particle Filtering,PF)有更高的定位精度和更强的抗NLOS误差性能.