Li-doped ZnO thin films had been grown by radio frequency magnetron sputtering and then annealed under various annealing temperatures. The characteristics of ZnO films were examined by XRD, FESEM, Hall measurement and...Li-doped ZnO thin films had been grown by radio frequency magnetron sputtering and then annealed under various annealing temperatures. The characteristics of ZnO films were examined by XRD, FESEM, Hall measurement and optical transmission spectra. Results showed that p type conduction was observed in Li doped ZnO films annealed at 500-600 ℃ and thep type ZnO films possessed a good crystalline with c-axis orientation, dense surface, and average transmission of about 85% in visible spectral region.展开更多
The Cd1-xZnxTe(CZT) single crystals were annealed by a two-step method including a vapor-environment step and a liquid-environment step in sequence. The effects of annealing on the properties of CZT were analyzed in...The Cd1-xZnxTe(CZT) single crystals were annealed by a two-step method including a vapor-environment step and a liquid-environment step in sequence. The effects of annealing on the properties of CZT were analyzed in detail. IR transmission measurement results show that IR transmission of CZT is improved dramatically after annealing. X-ray rocking curves indicate that the annealing treatment ameliorates crystal quality obviously, which is ascribed to the release of residual stress and the reduction of point defects. Photoluminescence(PL) spectra reveal that the full width at half maximum(FWHM) of the donor-bound exciton (D0, X) peak is reduced obviously, and the free exciton emission is weakened after annealing. Meanwhile, the intensity of the donor-acceptor pair(DAP) peak decreases to a great degree, which implies that the impurities are removed from CZT wafers. In addition, the deep defect-related emission band Dcomplex disappears after annealing, which mean that Cd vacancies are well-compensated. The results confirm that the two-step annealing is an effective approach to improve the qualities of CZT single crystals.展开更多
Indium doped Zn O films were grown on quartz glass substrates by radio frequency magnetron sputtering from powder targets. Indium content in the targets varied from 1at% to 9at%. In doping on the structure, optical an...Indium doped Zn O films were grown on quartz glass substrates by radio frequency magnetron sputtering from powder targets. Indium content in the targets varied from 1at% to 9at%. In doping on the structure, optical and electrical properties of Zn O thin films were studied. X-ray diffraction shows that all the films are hexagonal wurtzite with c-axis perpendicular to the substrates. There is a positive strain in the films and it increases with indium content. All the films show a high transmittance of 86% in the visible light region. Undoped Zn O thin film exhibits a high transmittance in the near infrared region. The transmittance of indium doped Zn O thin films decreases sharply in the near infrared region, and a cut-off wavelength can be found. The lowest resistivity of 4.3×10^(-4) Ω·cm and the highest carrier concentration of 1.86×10^(21) cm^(-3) can be obtained from Zn O thin films with an indium content of 5at% in the target.展开更多
基金Funded by the Natural Science Foundation of Liaoning,China(No.201204916)Training Programme Foundation for the Talents by the Education Bureau of Liaoning Province,China(No.LJQ2013068)+1 种基金Key Program of Ministry of Education,China(No.212031)Liaoning College Creative Team(No.LT2013014)
文摘Li-doped ZnO thin films had been grown by radio frequency magnetron sputtering and then annealed under various annealing temperatures. The characteristics of ZnO films were examined by XRD, FESEM, Hall measurement and optical transmission spectra. Results showed that p type conduction was observed in Li doped ZnO films annealed at 500-600 ℃ and thep type ZnO films possessed a good crystalline with c-axis orientation, dense surface, and average transmission of about 85% in visible spectral region.
基金Project(50336040) supported by the National Natural Science Foundation of China
文摘The Cd1-xZnxTe(CZT) single crystals were annealed by a two-step method including a vapor-environment step and a liquid-environment step in sequence. The effects of annealing on the properties of CZT were analyzed in detail. IR transmission measurement results show that IR transmission of CZT is improved dramatically after annealing. X-ray rocking curves indicate that the annealing treatment ameliorates crystal quality obviously, which is ascribed to the release of residual stress and the reduction of point defects. Photoluminescence(PL) spectra reveal that the full width at half maximum(FWHM) of the donor-bound exciton (D0, X) peak is reduced obviously, and the free exciton emission is weakened after annealing. Meanwhile, the intensity of the donor-acceptor pair(DAP) peak decreases to a great degree, which implies that the impurities are removed from CZT wafers. In addition, the deep defect-related emission band Dcomplex disappears after annealing, which mean that Cd vacancies are well-compensated. The results confirm that the two-step annealing is an effective approach to improve the qualities of CZT single crystals.
基金Funded by the Fundamental Research Fund for the Central Universities(No.CDJXS10102207)the National Natural Science Foundation of China(Nos.11075314,11404302 and 50942021)+2 种基金the Natural Science Foundation of Chongqing City(2011BA4031)the Third Stage of“211”Innovative Talent Training Project(No.S-09109)the Sharing Fund of Large-scale Equipment of Chongqing University(Nos.2010063072 and 2010121556)
文摘Indium doped Zn O films were grown on quartz glass substrates by radio frequency magnetron sputtering from powder targets. Indium content in the targets varied from 1at% to 9at%. In doping on the structure, optical and electrical properties of Zn O thin films were studied. X-ray diffraction shows that all the films are hexagonal wurtzite with c-axis perpendicular to the substrates. There is a positive strain in the films and it increases with indium content. All the films show a high transmittance of 86% in the visible light region. Undoped Zn O thin film exhibits a high transmittance in the near infrared region. The transmittance of indium doped Zn O thin films decreases sharply in the near infrared region, and a cut-off wavelength can be found. The lowest resistivity of 4.3×10^(-4) Ω·cm and the highest carrier concentration of 1.86×10^(21) cm^(-3) can be obtained from Zn O thin films with an indium content of 5at% in the target.