为了快速、准确地对小麦条锈病病害程度进行分级评估,提出了一种基于高光谱成像技术的小麦条锈病病害程度分级方法。首先利用Hyper SIS高光谱成像系统采集受条锈菌侵染后不同发病程度的小麦叶片高光谱图像,通过分析叶片区域与背景的光...为了快速、准确地对小麦条锈病病害程度进行分级评估,提出了一种基于高光谱成像技术的小麦条锈病病害程度分级方法。首先利用Hyper SIS高光谱成像系统采集受条锈菌侵染后不同发病程度的小麦叶片高光谱图像,通过分析叶片区域与背景的光谱特征,对555 nm波长的特征图像进行阈值分割获得掩膜图像,并用掩膜图像对高光谱图像进行掩膜处理,提取仅含叶片的高光谱图像;然后用主成分分析法(Principal component analysis,PCA)得到利于条锈病病斑和健康区域分割的第2主成分(The second principal component,PC2)图像,采用最大类间方差法(Otsu)分割出条锈病病斑区域;最后根据条锈病病斑区域面积占叶片面积的比例对小麦条锈病病害程度进行分级。试验结果表明:测试的270个不同小麦条锈病病害等级的叶片样本中,265个样本可被正确分级,分级正确率为98.15%。该研究为田间小麦条锈病害程度评估提供了基础,也为小麦条锈病抗性鉴定方法提供了新思路。展开更多
文摘为了快速、准确地对小麦条锈病病害程度进行分级评估,提出了一种基于高光谱成像技术的小麦条锈病病害程度分级方法。首先利用Hyper SIS高光谱成像系统采集受条锈菌侵染后不同发病程度的小麦叶片高光谱图像,通过分析叶片区域与背景的光谱特征,对555 nm波长的特征图像进行阈值分割获得掩膜图像,并用掩膜图像对高光谱图像进行掩膜处理,提取仅含叶片的高光谱图像;然后用主成分分析法(Principal component analysis,PCA)得到利于条锈病病斑和健康区域分割的第2主成分(The second principal component,PC2)图像,采用最大类间方差法(Otsu)分割出条锈病病斑区域;最后根据条锈病病斑区域面积占叶片面积的比例对小麦条锈病病害程度进行分级。试验结果表明:测试的270个不同小麦条锈病病害等级的叶片样本中,265个样本可被正确分级,分级正确率为98.15%。该研究为田间小麦条锈病害程度评估提供了基础,也为小麦条锈病抗性鉴定方法提供了新思路。