During femtosecond laser fabrication,photons are mainly absorbed by electrons,and the subsequent energy transfer from electrons to ions is of picosecond order.Hence,lattice motion is negligible within the femtosecond ...During femtosecond laser fabrication,photons are mainly absorbed by electrons,and the subsequent energy transfer from electrons to ions is of picosecond order.Hence,lattice motion is negligible within the femtosecond pulse duration,whereas femtosecond photon-electron interactions dominate the entire fabrication process.Therefore,femtosecond laser fabrication must be improved by controlling localized transient electron dynamics,which poses a challenge for measuring and controlling at the electron level during fabrication processes.Pump-probe spectroscopy presents a viable solution,which can be used to observe electron dynamics during a chemical reaction.In fact,femtosecond pulse durations are shorter than many physical/chemical characteristic times,which permits manipulating,adjusting,or interfering with electron dynamics.Hence,we proposed to control localized transient electron dynamics by temporally or spatially shaping femtosecond pulses,and further to modify localized transient materials properties,and then to adjust material phase change,and eventually to implement a novel fabrication method.This review covers our progresses over the past decade regarding electrons dynamics control(EDC)by shaping femtosecond laser pulses in micro/nanomanufacturing:(1)Theoretical models were developed to prove EDC feasibility and reveal its mechanisms;(2)on the basis of the theoretical predictions,many experiments are conducted to validate our EDC-based femtosecond laser fabrication method.Seven examples are reported,which proves that the proposed method can significantly improve fabrication precision,quality,throughput and repeatability and effectively control micro/nanoscale structures;(3)a multiscale measurement system was proposed and developed to study the fundamentals of EDC from the femtosecond scale to the nanosecond scale and to the millisecond scale;and(4)As an example of practical applications,our method was employed to fabricate some key structures in one of the 16 Chinese National S&T Major Projects,for which elec展开更多
The chemical bonding nature of rare earth(RE) elements can be studied by a quantitative analysis of electron domain of an atom. The outer electrons of RE elements are within the valence shell 4f^(0-14)5d^(0-1)6s...The chemical bonding nature of rare earth(RE) elements can be studied by a quantitative analysis of electron domain of an atom. The outer electrons of RE elements are within the valence shell 4f^(0-14)5d^(0-1)6s^2, which are involved in all chemical bonding features. We in this work found that the chemical bonding characteristics of 4f electrons are a kind of hybridizations, and classified them into three types of chemical bonding of 4f^(0-14)5d^(0-1)6s^2, furthermore, the coordination number ranging from 2 to 16 could thus be determined. We selected Y(NO_3)_3, La(NO_3)_3, Ce(NO_3)_3, YCl_3, LaCl_3, and CeCl_3 as examples to in-situ observe their IR spectra of chemical bonding behaviors of Y^(3+), La^(3+) and Ce^(3+) cations, which could show different chemical bonding modes of 4f and 5d electrons. In the present study, we obtained the direct criterion to confirm whether 4f electrons can participate in chemical bonding, that is, only when the coordination number of RE cations is larger than 9.展开更多
Interactions between very/extremely low frequency (VLF/ELF) waves and energetic electrons play a fundamental role in dynamics occurring in the inner magnetosphere. Here, we briefly discuss global properties of VLF/ELF...Interactions between very/extremely low frequency (VLF/ELF) waves and energetic electrons play a fundamental role in dynamics occurring in the inner magnetosphere. Here, we briefly discuss global properties of VLF/ELF waves, along with the variability of the electron radiation belts associated with wave-particle interactions and radial diffusion. We provide cases of electron loss and acceleration as a result of wave-particle interactions primarily due to such waves, and particularly some preliminary results of 3D evolution of phase space density from our currently developing 3D code. We comment on the existing mechanisms responsible for acceleration and loss, and identify several critical issues that need to be addressed. We review latest progress and suggest open questions for future investigation.展开更多
The CME’s structure of solar wind(interplanetary magnetic field)is different from CIR’s.The two processes in which plasma and solar wind energy are injected into the Earth’s inner magnetosphere are not the same.So,...The CME’s structure of solar wind(interplanetary magnetic field)is different from CIR’s.The two processes in which plasma and solar wind energy are injected into the Earth’s inner magnetosphere are not the same.So,the variations of energetic elec- trons flux in the radiation belts are different between the storms associated with CMEs and CIRs.By using data from SAMPEX(Solar,Anomalous,and Magnetospheric Particle Explorer)satellite,we have investigated the dynamic variations of the outer radiation belt for 1.5–6.0 MeV electrons during 54 CME-driven storms and 26 CIR-driven recurrent storms.According to the superposed epoch analysis,for CME-and CIR-driven storms,when the Dst index reaches the minimum,the locations of the outer boundary move to L=4 and L=5.5,respectively.In the recovery phases,the locations of the outer boundary of the outer radiation belt are generally lower than and slightly higher than those before CME-and CIR-driven storms,respectively.We have found that the logarithmically decaying 1/e cut-off L-shell is a satisfying indicator of the outer boundary of the outer radiation belt.Furthermore,our study shows that the logarithmically decaying 1/e cut-off latitude is dependent on the Kp index in the main phases of CME-and CIR-driven storms,while in the recovery phases,there is no obvious correlation.In ad- dition,it has been shown that the locations of the peak electron flux are controlled by the minimum Dst index in the main phases of CME-driven storms.The influences of multiple storms on the electron flux of outer radiation belt have also been in- vestigated.展开更多
We present initial results on the temporal evolution of the phase space density (PSD) of the outer radiation belt energetic electrons driven by the superluminous R-X mode waves. We calculate diffusion rates in pitch a...We present initial results on the temporal evolution of the phase space density (PSD) of the outer radiation belt energetic electrons driven by the superluminous R-X mode waves. We calculate diffusion rates in pitch angle and momentum assuming the standard Gaussian distributions in both wave frequency and wave normal angle at the location L=6.5. We solve a 2D momentum-pitch-angle Fokker-Planck equation using those diffusion rates as inputs. Numerical results show that R-X mode can produce significant acceleration of relativistic electrons around geostationary orbit,supporting previous findings that superluminous waves potentially contribute to dramatic variation in the outer radiation belt electron dynamics.展开更多
We identified 28 discrete electron events(DEEs) with enhanced fluxes at ~50-200 keV in the high-altitude cusp/polar cap/lobe,using the electron measurements by the BeiDa Image Electron Spectrometer(BD-IES) instrument ...We identified 28 discrete electron events(DEEs) with enhanced fluxes at ~50-200 keV in the high-altitude cusp/polar cap/lobe,using the electron measurements by the BeiDa Image Electron Spectrometer(BD-IES) instrument onboard an inclined(55°)geosynchronous orbit(IGSO) satellite from October 2015 to January 2016. We find that among the 28 DEEs, 22 occur in the nightside and mostly in the northern cusp/polar cap/lobe, while 6 occur in the dayside and all in the southern cusp; 24 events correspond to an average interplanetary magnetic field(IMF) component B_z>0, 3 correspond to an average IMF B_z<0, and 1 has no OMNI IMF data. In these DEEs, the observed average omnidirectional electron differential flux generally fits well to a power-law spectrum, J^E^(-γ), with the spectral index y ranging from 2.6 to 4.6, while the average electron flux varies over three orders of magnitude from event to event. The spectral index of these cusp DEEs are(strongly) larger than the spectral index of solar wind superhalo electrons(radiation belt electrons) observed by the WIND 3 D Plasma & Energetic Particle instrument(the BD-IES). At^110 keV,the electron flux of DEEs in the cusp/polar cap/lobe shows a weak positive correlation with the solar wind superhalo electron flux but no obvious correlation with the radiation belt electron flux. These results suggest that these DEEs probably originate from transient processes acting on the solar wind superhalo electrons, e.g., the mid/high-latitude reconnection.展开更多
In cases where substorm injections can be observed simultaneously by multiple spacecraft,they can help elucidate the potential mechanisms of particle transport and energization,of great importance to understanding and...In cases where substorm injections can be observed simultaneously by multiple spacecraft,they can help elucidate the potential mechanisms of particle transport and energization,of great importance to understanding and modeling the magnetosphere.In this paper,using data returned from the BeiDa-IES(BD-IES) instrument onboard a satellite in an inclined(55°) geosynchronous orbit(IGSO),in combination with two geo-transfer orbiting(GTO) satellite Van Allen Probes(A and B),we analyze a substorm injection event that occurred on the 16 th of October 2015.During this substorm injection,the IGSO onboard BD-IES was outbound,while both Van Allen Probe satellites(A and B) were inbound,a configuration of multiple trajectories that provides a unique opportunity to simultaneously investigate both the inward and outward radial propagation of substorm injection.Indicated by AE/AL indices,this substorm was closely related to an IMF/solar wind discontinuity that showed a sharp change in IMF Bz direction to the north.The innermost signature of this substorm injection was detected by Van Allen Probes A and B at L-3.7,while the outermost signature was observed by the onboard BD-IES instrument at L-10.These data indicate that the substorm had a global,rather than just local,effect.Finally,we suggest that electric fields carried by fast-mode compressional waves around the substorm injection are the most likely candidate mechanism for the electron injection signatures observed in the inner- and outermost inner magnetosphere.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.90923039,91323301,50705009,51105037,51322511 and 51025521)National Basic Research Program of China(973 Program)(Grant No.2011CB013000)+4 种基金the 863 Project of China under Grant No.2008AA03Z301the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(No.708018)the 111 Project of China(Grant No.B08043)Multidisciplinary University Research Initiative(MURI)program of USA under Grant No.N00014-05-1-0432National Science Foundation of USA under Grant No.0423233.
文摘During femtosecond laser fabrication,photons are mainly absorbed by electrons,and the subsequent energy transfer from electrons to ions is of picosecond order.Hence,lattice motion is negligible within the femtosecond pulse duration,whereas femtosecond photon-electron interactions dominate the entire fabrication process.Therefore,femtosecond laser fabrication must be improved by controlling localized transient electron dynamics,which poses a challenge for measuring and controlling at the electron level during fabrication processes.Pump-probe spectroscopy presents a viable solution,which can be used to observe electron dynamics during a chemical reaction.In fact,femtosecond pulse durations are shorter than many physical/chemical characteristic times,which permits manipulating,adjusting,or interfering with electron dynamics.Hence,we proposed to control localized transient electron dynamics by temporally or spatially shaping femtosecond pulses,and further to modify localized transient materials properties,and then to adjust material phase change,and eventually to implement a novel fabrication method.This review covers our progresses over the past decade regarding electrons dynamics control(EDC)by shaping femtosecond laser pulses in micro/nanomanufacturing:(1)Theoretical models were developed to prove EDC feasibility and reveal its mechanisms;(2)on the basis of the theoretical predictions,many experiments are conducted to validate our EDC-based femtosecond laser fabrication method.Seven examples are reported,which proves that the proposed method can significantly improve fabrication precision,quality,throughput and repeatability and effectively control micro/nanoscale structures;(3)a multiscale measurement system was proposed and developed to study the fundamentals of EDC from the femtosecond scale to the nanosecond scale and to the millisecond scale;and(4)As an example of practical applications,our method was employed to fabricate some key structures in one of the 16 Chinese National S&T Major Projects,for which elec
基金supported by the National Natural Science Foundation of China(51125009,91434118,21401185,21521092)Hundred Talents Program of Chinese Academy of SciencesJilin Province Science and Technology Development Project(20170101092JC,20160520006JH)
文摘The chemical bonding nature of rare earth(RE) elements can be studied by a quantitative analysis of electron domain of an atom. The outer electrons of RE elements are within the valence shell 4f^(0-14)5d^(0-1)6s^2, which are involved in all chemical bonding features. We in this work found that the chemical bonding characteristics of 4f electrons are a kind of hybridizations, and classified them into three types of chemical bonding of 4f^(0-14)5d^(0-1)6s^2, furthermore, the coordination number ranging from 2 to 16 could thus be determined. We selected Y(NO_3)_3, La(NO_3)_3, Ce(NO_3)_3, YCl_3, LaCl_3, and CeCl_3 as examples to in-situ observe their IR spectra of chemical bonding behaviors of Y^(3+), La^(3+) and Ce^(3+) cations, which could show different chemical bonding modes of 4f and 5d electrons. In the present study, we obtained the direct criterion to confirm whether 4f electrons can participate in chemical bonding, that is, only when the coordination number of RE cations is larger than 9.
基金supported by National Natural Science Foundation of China (Grant Nos. 40874076, 40774079, 40925014, 40774078, 40831061)Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200806024)the Construct Program of the Key Discipline in Changsha University of Science and Technology,and the Specialized Research Fund for State Key Laboratories for Space Weather
文摘Interactions between very/extremely low frequency (VLF/ELF) waves and energetic electrons play a fundamental role in dynamics occurring in the inner magnetosphere. Here, we briefly discuss global properties of VLF/ELF waves, along with the variability of the electron radiation belts associated with wave-particle interactions and radial diffusion. We provide cases of electron loss and acceleration as a result of wave-particle interactions primarily due to such waves, and particularly some preliminary results of 3D evolution of phase space density from our currently developing 3D code. We comment on the existing mechanisms responsible for acceleration and loss, and identify several critical issues that need to be addressed. We review latest progress and suggest open questions for future investigation.
基金supported by the National Natural Science Foundation of China(Grant Nos.40831061,41074117)the Specialized Research Fund for State Key Laboratories
文摘The CME’s structure of solar wind(interplanetary magnetic field)is different from CIR’s.The two processes in which plasma and solar wind energy are injected into the Earth’s inner magnetosphere are not the same.So,the variations of energetic elec- trons flux in the radiation belts are different between the storms associated with CMEs and CIRs.By using data from SAMPEX(Solar,Anomalous,and Magnetospheric Particle Explorer)satellite,we have investigated the dynamic variations of the outer radiation belt for 1.5–6.0 MeV electrons during 54 CME-driven storms and 26 CIR-driven recurrent storms.According to the superposed epoch analysis,for CME-and CIR-driven storms,when the Dst index reaches the minimum,the locations of the outer boundary move to L=4 and L=5.5,respectively.In the recovery phases,the locations of the outer boundary of the outer radiation belt are generally lower than and slightly higher than those before CME-and CIR-driven storms,respectively.We have found that the logarithmically decaying 1/e cut-off L-shell is a satisfying indicator of the outer boundary of the outer radiation belt.Furthermore,our study shows that the logarithmically decaying 1/e cut-off latitude is dependent on the Kp index in the main phases of CME-and CIR-driven storms,while in the recovery phases,there is no obvious correlation.In ad- dition,it has been shown that the locations of the peak electron flux are controlled by the minimum Dst index in the main phases of CME-driven storms.The influences of multiple storms on the electron flux of outer radiation belt have also been in- vestigated.
基金supported by the National Natural Science Foundation of China(Grant Nos.40774078,40925014,40874076and40931053)the Special Fund for Public Welfare Industry(Meteorology)GYHY200806024the Specialized Research Fund for State Key Laboratories of China.
文摘We present initial results on the temporal evolution of the phase space density (PSD) of the outer radiation belt energetic electrons driven by the superluminous R-X mode waves. We calculate diffusion rates in pitch angle and momentum assuming the standard Gaussian distributions in both wave frequency and wave normal angle at the location L=6.5. We solve a 2D momentum-pitch-angle Fokker-Planck equation using those diffusion rates as inputs. Numerical results show that R-X mode can produce significant acceleration of relativistic electrons around geostationary orbit,supporting previous findings that superluminous waves potentially contribute to dramatic variation in the outer radiation belt electron dynamics.
基金supported by the National Natural Science Foundation of China(Grant Nos.41421003,41474148,41774183&41374167)Major Project of Chinese National Programs for Fundamental Research and Development(Grant No.2012CB825603)
文摘We identified 28 discrete electron events(DEEs) with enhanced fluxes at ~50-200 keV in the high-altitude cusp/polar cap/lobe,using the electron measurements by the BeiDa Image Electron Spectrometer(BD-IES) instrument onboard an inclined(55°)geosynchronous orbit(IGSO) satellite from October 2015 to January 2016. We find that among the 28 DEEs, 22 occur in the nightside and mostly in the northern cusp/polar cap/lobe, while 6 occur in the dayside and all in the southern cusp; 24 events correspond to an average interplanetary magnetic field(IMF) component B_z>0, 3 correspond to an average IMF B_z<0, and 1 has no OMNI IMF data. In these DEEs, the observed average omnidirectional electron differential flux generally fits well to a power-law spectrum, J^E^(-γ), with the spectral index y ranging from 2.6 to 4.6, while the average electron flux varies over three orders of magnitude from event to event. The spectral index of these cusp DEEs are(strongly) larger than the spectral index of solar wind superhalo electrons(radiation belt electrons) observed by the WIND 3 D Plasma & Energetic Particle instrument(the BD-IES). At^110 keV,the electron flux of DEEs in the cusp/polar cap/lobe shows a weak positive correlation with the solar wind superhalo electron flux but no obvious correlation with the radiation belt electron flux. These results suggest that these DEEs probably originate from transient processes acting on the solar wind superhalo electrons, e.g., the mid/high-latitude reconnection.
基金supported by the National Natural Science Foundation of China(Grant No.41421003)Major Project of Chinese National Programs for Fundamental Research and Development(Grant No.2012CB825603)
文摘In cases where substorm injections can be observed simultaneously by multiple spacecraft,they can help elucidate the potential mechanisms of particle transport and energization,of great importance to understanding and modeling the magnetosphere.In this paper,using data returned from the BeiDa-IES(BD-IES) instrument onboard a satellite in an inclined(55°) geosynchronous orbit(IGSO),in combination with two geo-transfer orbiting(GTO) satellite Van Allen Probes(A and B),we analyze a substorm injection event that occurred on the 16 th of October 2015.During this substorm injection,the IGSO onboard BD-IES was outbound,while both Van Allen Probe satellites(A and B) were inbound,a configuration of multiple trajectories that provides a unique opportunity to simultaneously investigate both the inward and outward radial propagation of substorm injection.Indicated by AE/AL indices,this substorm was closely related to an IMF/solar wind discontinuity that showed a sharp change in IMF Bz direction to the north.The innermost signature of this substorm injection was detected by Van Allen Probes A and B at L-3.7,while the outermost signature was observed by the onboard BD-IES instrument at L-10.These data indicate that the substorm had a global,rather than just local,effect.Finally,we suggest that electric fields carried by fast-mode compressional waves around the substorm injection are the most likely candidate mechanism for the electron injection signatures observed in the inner- and outermost inner magnetosphere.