In this study,a novel strategy for developingα+βdual-phase titanium alloys with low Young's modulus and high yield strength was proposed,and a Ti-15Nb-5Zr-4Sn-1 Fe alloy was developed through theoretical composi...In this study,a novel strategy for developingα+βdual-phase titanium alloys with low Young's modulus and high yield strength was proposed,and a Ti-15Nb-5Zr-4Sn-1 Fe alloy was developed through theoretical composition design and microstructure manipulation.After hot-rolling and subsequent annealing,a high volume fraction of ultrafine grainedαphase embedded in metastableβ-matrix was formed in the microstructure as intended.Consequently,this alloy exhibits both low Young's modulus(61 GPa)and high yield strength(912 MPa).The experimental results prove that the proposed strategy is appropriate for developing titanium alloys with superior yield strength-to-modulus ratio than those of conventional metallic biomedical materials.Present study might shed light on the research and development of advanced biomedical titanium alloys with low Young's modulus and high yield strength.展开更多
基金the National Natural Science Foundation of China(Nos.51671012,51831006 and 51971009)the International Science and Technology Cooperation Program of China(No.2015DFA51430)the Fundamental Research Funds for the Central Universities。
文摘In this study,a novel strategy for developingα+βdual-phase titanium alloys with low Young's modulus and high yield strength was proposed,and a Ti-15Nb-5Zr-4Sn-1 Fe alloy was developed through theoretical composition design and microstructure manipulation.After hot-rolling and subsequent annealing,a high volume fraction of ultrafine grainedαphase embedded in metastableβ-matrix was formed in the microstructure as intended.Consequently,this alloy exhibits both low Young's modulus(61 GPa)and high yield strength(912 MPa).The experimental results prove that the proposed strategy is appropriate for developing titanium alloys with superior yield strength-to-modulus ratio than those of conventional metallic biomedical materials.Present study might shed light on the research and development of advanced biomedical titanium alloys with low Young's modulus and high yield strength.