Neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's diseases have multifaceted nature because of the different factors contributing to their progression. The complex nature of neur...Neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's diseases have multifaceted nature because of the different factors contributing to their progression. The complex nature of neurodegenerative diseases has developed a pressing need to design multitarget-directed ligands to address the complementary pathways involved in these diseases. The major enzyme targets for development of therapeutics for Alzheimer's disease are cholinesterase and β-secretase enzymes. In this review, we discuss recent advances in profiling single target inhibitors based on these enzymes to multitarget-directed ligands as potential therapeutics for this devastating disease. In addition, therapeutics based on iron chelation strategy are discussed as well.展开更多
Amyloid-beta(Aβ)plays a pivotal role in the pathogenesis of Alzheimer's disease(AD)and has been regarded as the main therapeutic target for AD.However,most of the Aβ-targeted clinical trials have not succeeded.T...Amyloid-beta(Aβ)plays a pivotal role in the pathogenesis of Alzheimer's disease(AD)and has been regarded as the main therapeutic target for AD.However,most of the Aβ-targeted clinical trials have not succeeded.Therefore,the Aβ-targeted therapeutic strategy on treating this complex disease needs to be re-evaluated.In this review,we analyzed the challenges and critical points of the current anti-Aβtherapeutic strategies.In addition to Aβ,multiple pathological events such as tau hyperphosphorylation,oxidative stress,and neuroinflammation,which are involved in AD pathogenesis and synergistically drive disease progression,could be important targets for AD treatment.Tertiary prevention strategies are needed for the successful management of AD due to its complex and dynamic pathogenesis.Systemic perspective addressing the disease pathogenesis within and outside the brain,as well as the multidomain intervention targeting risk factors and comorbidities,are important approaches for the therapeutic solutions of AD.展开更多
BACKGROUND: Preparation of Ginkgo leaf has been widely used to improve cognitive deficits and dementia, in particular in Alzheirner's disease patients. However, the precise mechanism of action of Ginkgo leaf remains...BACKGROUND: Preparation of Ginkgo leaf has been widely used to improve cognitive deficits and dementia, in particular in Alzheirner's disease patients. However, the precise mechanism of action of Ginkgo leaf remains unclear. OBJECTIVE: To explore the effect of Ginkgo Biloba extract (Egb761), Ginaton, on β -secretase expression in rat hippocampal neuronal cultures following chronic hypoxic and hypoglycemic conditions. DESIGN, TIME AND SETTNG: Completely by randomized, grouping study. The experiment was performed at the Laboratory of Molecular Imaging, Southeast University between August 2006 and August 2007. MATERIALS: A total of 128 Wistar rats aged 24 hours were selected, and hippocampal neurons were harvested for primary cultures. METHODS: On day 7, primary hippocampal neuronal cultures were treated with Egb761 (0, 25, 50, 100, 150, and 200μg/mL) under hypoxic/hypoglycemic or hypoglycemic culture conditions for 12, 24, and 36 hours, respectively. Hippocampal neurons cultured in primary culture medium served as control. MAIN OUTCOME MEASURES: Cell viability was assayed using 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT); fluorescence detection of β -secretase activity was performed; Western Blot was used to measure β -secretase expression. RESULTS: Cell viability under hypoxic/hypoglycemic or hypoglycemic culture conditions was significantly less than control cells (P 〈 0.05). Under hypoxic/hypoglycemic or hypoglycemic culture conditions, treatment with 25 μg/mL Egb761 did not alter cell viability. However, 〉 25 μg/mL Egb761 induced greater cell viability (P 〈 0.05). No differences were observed between hypoxic/hypoglycemic or hypoglycemic cells (P 〉 0.05). α -secretase activity was increased after 12 hours in hypoxic/hypoglycemic culture (P 〈 0.01). There were no significant differences between the 12-, 24-, or 36-hour Egb761 groups and the hypoxic/hypoglycemic groups (P 〉 0.05). β -secretase activity was greater after展开更多
文摘Neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's diseases have multifaceted nature because of the different factors contributing to their progression. The complex nature of neurodegenerative diseases has developed a pressing need to design multitarget-directed ligands to address the complementary pathways involved in these diseases. The major enzyme targets for development of therapeutics for Alzheimer's disease are cholinesterase and β-secretase enzymes. In this review, we discuss recent advances in profiling single target inhibitors based on these enzymes to multitarget-directed ligands as potential therapeutics for this devastating disease. In addition, therapeutics based on iron chelation strategy are discussed as well.
基金supported by the National Natural Science Foundation of China(91749206,81930028,81625007,81870860,31921003)。
文摘Amyloid-beta(Aβ)plays a pivotal role in the pathogenesis of Alzheimer's disease(AD)and has been regarded as the main therapeutic target for AD.However,most of the Aβ-targeted clinical trials have not succeeded.Therefore,the Aβ-targeted therapeutic strategy on treating this complex disease needs to be re-evaluated.In this review,we analyzed the challenges and critical points of the current anti-Aβtherapeutic strategies.In addition to Aβ,multiple pathological events such as tau hyperphosphorylation,oxidative stress,and neuroinflammation,which are involved in AD pathogenesis and synergistically drive disease progression,could be important targets for AD treatment.Tertiary prevention strategies are needed for the successful management of AD due to its complex and dynamic pathogenesis.Systemic perspective addressing the disease pathogenesis within and outside the brain,as well as the multidomain intervention targeting risk factors and comorbidities,are important approaches for the therapeutic solutions of AD.
文摘BACKGROUND: Preparation of Ginkgo leaf has been widely used to improve cognitive deficits and dementia, in particular in Alzheirner's disease patients. However, the precise mechanism of action of Ginkgo leaf remains unclear. OBJECTIVE: To explore the effect of Ginkgo Biloba extract (Egb761), Ginaton, on β -secretase expression in rat hippocampal neuronal cultures following chronic hypoxic and hypoglycemic conditions. DESIGN, TIME AND SETTNG: Completely by randomized, grouping study. The experiment was performed at the Laboratory of Molecular Imaging, Southeast University between August 2006 and August 2007. MATERIALS: A total of 128 Wistar rats aged 24 hours were selected, and hippocampal neurons were harvested for primary cultures. METHODS: On day 7, primary hippocampal neuronal cultures were treated with Egb761 (0, 25, 50, 100, 150, and 200μg/mL) under hypoxic/hypoglycemic or hypoglycemic culture conditions for 12, 24, and 36 hours, respectively. Hippocampal neurons cultured in primary culture medium served as control. MAIN OUTCOME MEASURES: Cell viability was assayed using 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT); fluorescence detection of β -secretase activity was performed; Western Blot was used to measure β -secretase expression. RESULTS: Cell viability under hypoxic/hypoglycemic or hypoglycemic culture conditions was significantly less than control cells (P 〈 0.05). Under hypoxic/hypoglycemic or hypoglycemic culture conditions, treatment with 25 μg/mL Egb761 did not alter cell viability. However, 〉 25 μg/mL Egb761 induced greater cell viability (P 〈 0.05). No differences were observed between hypoxic/hypoglycemic or hypoglycemic cells (P 〉 0.05). α -secretase activity was increased after 12 hours in hypoxic/hypoglycemic culture (P 〈 0.01). There were no significant differences between the 12-, 24-, or 36-hour Egb761 groups and the hypoxic/hypoglycemic groups (P 〉 0.05). β -secretase activity was greater after