期刊文献+
共找到568篇文章
< 1 2 29 >
每页显示 20 50 100
Pre-trained models for natural language processing: A survey 被引量:146
1
作者 QIU XiPeng SUN TianXiang +3 位作者 XU YiGe SHAO YunFan DAI Ning HUANG XuanJing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期1872-1897,共26页
Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language rep... Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next,we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks. 展开更多
关键词 deep learning neural network natural language processing pre-trained model distributed representation word embedding self-supervised learning language modelling
原文传递
面向自然语言处理的预训练技术研究综述 被引量:100
2
作者 李舟军 范宇 吴贤杰 《计算机科学》 CSCD 北大核心 2020年第3期162-173,共12页
近年来,随着深度学习的快速发展,面向自然语言处理领域的预训练技术获得了长足的进步。早期的自然语言处理领域长期使用Word2Vec等词向量方法对文本进行编码,这些词向量方法也可看作静态的预训练技术。然而,这种上下文无关的文本表示给... 近年来,随着深度学习的快速发展,面向自然语言处理领域的预训练技术获得了长足的进步。早期的自然语言处理领域长期使用Word2Vec等词向量方法对文本进行编码,这些词向量方法也可看作静态的预训练技术。然而,这种上下文无关的文本表示给其后的自然语言处理任务带来的提升非常有限,并且无法解决一词多义问题。ELMo提出了一种上下文相关的文本表示方法,可有效处理多义词问题。其后,GPT和BERT等预训练语言模型相继被提出,其中BERT模型在多个典型下游任务上有了显著的效果提升,极大地推动了自然语言处理领域的技术发展,自此便进入了动态预训练技术的时代。此后,基于BERT的改进模型、XLNet等大量预训练语言模型不断涌现,预训练技术已成为自然语言处理领域不可或缺的主流技术。文中首先概述预训练技术及其发展历史,并详细介绍自然语言处理领域的经典预训练技术,包括早期的静态预训练技术和经典的动态预训练技术;然后简要梳理一系列新式的有启发意义的预训练技术,包括基于BERT的改进模型和XLNet;在此基础上,分析目前预训练技术研究所面临的问题;最后对预训练技术的未来发展趋势进行展望。 展开更多
关键词 自然语言处理 预训练 词向量 语言模型
下载PDF
自然语言处理中的深度学习:方法及应用 被引量:56
3
作者 林奕欧 雷航 +1 位作者 李晓瑜 吴佳 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第6期913-919,共7页
该文围绕特征表示和模型原理,以神经网络语言模型与词向量作为深度学习与自然语言处理结合的切入点,概述了当前主要深度神经网络的模型原理和相关应用。之后综述了当前研究人员在自然语言处理热点领域上所使用的最新深度学习方法并及所... 该文围绕特征表示和模型原理,以神经网络语言模型与词向量作为深度学习与自然语言处理结合的切入点,概述了当前主要深度神经网络的模型原理和相关应用。之后综述了当前研究人员在自然语言处理热点领域上所使用的最新深度学习方法并及所取得的成果。最后总结了深度学习方法在当前自然语言处理研究应用中所遇到的瓶颈,并对未来可能的研究重点做出展望。 展开更多
关键词 深度学习 深度神经网络 语言模型 自然语言处理 词向量
下载PDF
基于迁移学习和BiLSTM-CRF的中文命名实体识别 被引量:53
4
作者 武惠 吕立 于碧辉 《小型微型计算机系统》 CSCD 北大核心 2019年第6期1142-1147,共6页
针对中文命名实体识别问题,该文提出了一种基于迁移学习和深度学习的TrBiLSTM-CRF模型.该模型采用基于实例的迁移学习算法,通过权值生成和样本选择,将源域的知识迁移到目标域,有效地解决了深度学习对少量数据学习能力不足的问题;通过词... 针对中文命名实体识别问题,该文提出了一种基于迁移学习和深度学习的TrBiLSTM-CRF模型.该模型采用基于实例的迁移学习算法,通过权值生成和样本选择,将源域的知识迁移到目标域,有效地解决了深度学习对少量数据学习能力不足的问题;通过词向量、BiLSTM、CRF等操作融合了上下文语义信息,克服了对人工特征和专家知识的依赖.实验结果表明,TrBiLSTMCRF模型在小规模数据集上进行中文机构名命名实体识别时,其准确率、召回率和F值分别为91. 57%、72. 29%和0. 80%,相比于该文提到的其他方法,取得了较好的效果. 展开更多
关键词 中文命名实体识别 TrBiLSTM-CRF 迁移学习 深度学习 词向量
下载PDF
基于BLSTM的命名实体识别方法 被引量:51
5
作者 冯艳红 于红 +1 位作者 孙庚 孙娟娟 《计算机科学》 CSCD 北大核心 2018年第2期261-268,共8页
传统的命名实体识别方法直接依靠大量的人工特征和专门的领域知识,解决了监督学习语料不足的问题,但设计人工特征和获取领域知识的代价昂贵。针对该问题,提出一种基于BLSTM(Bidirectional Long Short-Term Memory)的神经网络结构的命名... 传统的命名实体识别方法直接依靠大量的人工特征和专门的领域知识,解决了监督学习语料不足的问题,但设计人工特征和获取领域知识的代价昂贵。针对该问题,提出一种基于BLSTM(Bidirectional Long Short-Term Memory)的神经网络结构的命名实体识别方法。该方法不再直接依赖于人工特征和领域知识,而是利用基于上下文的词向量和基于字的词向量,前者表达命名实体的上下文信息,后者表达构成命名实体的前缀、后缀和领域信息;同时,利用标注序列中标签之间的相关性对BLSTM的代价函数进行约束,并将领域知识嵌入模型的代价函数中,进一步增强模型的识别能力。实验表明,所提方法的识别效果优于传统方法。 展开更多
关键词 BLSTM 命名实体 词向量 代价函数
下载PDF
自然语言处理预训练模型的研究综述 被引量:48
6
作者 余同瑞 金冉 +2 位作者 韩晓臻 李家辉 郁婷 《计算机工程与应用》 CSCD 北大核心 2020年第23期12-22,共11页
近年来,深度学习技术被广泛应用于各个领域,基于深度学习的预处理模型将自然语言处理带入一个新时代。预训练模型的目标是如何使预训练好的模型处于良好的初始状态,在下游任务中达到更好的性能表现。对预训练技术及其发展历史进行介绍,... 近年来,深度学习技术被广泛应用于各个领域,基于深度学习的预处理模型将自然语言处理带入一个新时代。预训练模型的目标是如何使预训练好的模型处于良好的初始状态,在下游任务中达到更好的性能表现。对预训练技术及其发展历史进行介绍,并按照模型特点划分为基于概率统计的传统模型和基于深度学习的新式模型进行综述;简要分析传统预训练模型的特点及局限性,重点介绍基于深度学习的预训练模型,并针对它们在下游任务的表现进行对比评估;梳理出具有启发意义的新式预训练模型,简述这些模型的改进机制以及在下游任务中取得的性能提升;总结目前预训练的模型所面临的问题,并对后续发展趋势进行展望。 展开更多
关键词 深度学习 自然语言处理 预处理 词向量 语言模型
下载PDF
基于word2vec和LSTM的饮食健康文本分类研究 被引量:42
7
作者 赵明 杜会芳 +1 位作者 董翠翠 陈长松 《农业机械学报》 EI CAS CSCD 北大核心 2017年第10期202-208,共7页
为了对饮食文本信息高效分类,建立一种基于word2vec和长短期记忆网络(Long-short term memory,LSTM)的分类模型。针对食物百科和饮食健康文本特点,首先利用word2vec实现包含语义信息的词向量表示,并解决了传统方法导致数据表示稀疏及维... 为了对饮食文本信息高效分类,建立一种基于word2vec和长短期记忆网络(Long-short term memory,LSTM)的分类模型。针对食物百科和饮食健康文本特点,首先利用word2vec实现包含语义信息的词向量表示,并解决了传统方法导致数据表示稀疏及维度灾难问题,基于K-means++根据语义关系聚类以提高训练数据质量。由word2vec构建文本向量作为LSTM的初始输入,训练LSTM分类模型,自动提取特征,进行饮食宜、忌的文本分类。实验采用48 000个文档进行测试,结果显示,分类准确率为98.08%,高于利用tf-idf、bag-of-words等文本数值化表示方法以及基于支持向量机(Support vector machine,SVM)和卷积神经网络(Convolutional neural network,CNN)分类算法结果。实验结果表明,利用该方法能够高质量地对饮食文本自动分类,帮助人们有效地利用健康饮食信息。 展开更多
关键词 文本分类 word2vec 词向量 长短期记忆网络 K-means++
下载PDF
基于word2vec和双向LSTM的情感分类深度模型 被引量:43
8
作者 黄贤英 刘广峰 +1 位作者 刘小洋 阳安志 《计算机应用研究》 CSCD 北大核心 2019年第12期3583-3587,3596,共6页
针对社交网络文本传统情感分类模型存在先验知识依赖以及语义理解不足的问题,提出一种基于word2vec和双向长短时记忆循环神经网络的情感分类模型--WEEF-BILSTM。采用基于CBOW (continuous bag-of-words)方式的word2vec模型针对语料训练... 针对社交网络文本传统情感分类模型存在先验知识依赖以及语义理解不足的问题,提出一种基于word2vec和双向长短时记忆循环神经网络的情感分类模型--WEEF-BILSTM。采用基于CBOW (continuous bag-of-words)方式的word2vec模型针对语料训练词向量,减小词向量间的稀疏度,通过双向LSTM神经网络获取更为完整的文本上下文信息从而提取出深度词向量特征,继而使用one-versus-one SVM对其进行情感分类。实验结果表明,提出的WEEF-BILSTM模型较其他模型分类效果更好,能达到更优的准确率和F值。 展开更多
关键词 文本分类 情感分析 双向长短时记忆循环神经网络 词向量 社交网络
下载PDF
基于深度学习和OCC情感规则的网络舆情情感识别研究 被引量:41
9
作者 吴鹏 刘恒旺 沈思 《情报学报》 CSSCI CSCD 北大核心 2017年第9期972-980,共9页
为解决网络舆情情感倾向性分析中语义理解不足和仅关注情感词典的现状,本文基于OCC模型认知情感角度建立情感规则,对网络舆情中突发事件的微博文本进行情感分类标注作为训练集,并对深度学习中卷积神经网络模型进行训练得到网络舆情情感... 为解决网络舆情情感倾向性分析中语义理解不足和仅关注情感词典的现状,本文基于OCC模型认知情感角度建立情感规则,对网络舆情中突发事件的微博文本进行情感分类标注作为训练集,并对深度学习中卷积神经网络模型进行训练得到网络舆情情感识别模型。通过对比实验证明OCC情感规则标注使数据集情感分类更加精确,卷积神经网络的识别效果显著优于传统的机器学习方式(SVM),情感识别模型情感最高可达到90.98%的准确率。 展开更多
关键词 网络舆情 OCC模型 深度学习 词向量 卷积神经网络
下载PDF
一种基于LSTM和CNN混合模型的文本分类方法 被引量:37
10
作者 王海涛 宋文 王辉 《小型微型计算机系统》 CSCD 北大核心 2020年第6期1163-1168,共6页
针对卷积神经网络(Convolutional Neural Network,CNN)在获取文本中上下文依赖关系方面的不足及深层神经网络在提取文本特征时出现的特征丢失问题,提出一种将长短时记忆网络(Long Short-Term Memory,LSTM)与卷积神经网络结合的文本分类... 针对卷积神经网络(Convolutional Neural Network,CNN)在获取文本中上下文依赖关系方面的不足及深层神经网络在提取文本特征时出现的特征丢失问题,提出一种将长短时记忆网络(Long Short-Term Memory,LSTM)与卷积神经网络结合的文本分类模型MLCNN(Merge-LSTM-CNN).首先,利用词嵌入将输入文本进行向量表示,通过三层CNN提取文本的局部特征,进而整合出全文语义;同时,使用LSTM存储文本中历史信息的特征,以获取文本的上下文关联语义;其次,将输入向量分别与各层CNN的输出相融合,实现原始特征的重用.实验结果表明,相对于CNN、LSTM以及其改进模型,MLCNN模型的分类准确率达到96.45%,取得更好的分类效果. 展开更多
关键词 文本分类 长短时记忆网络 卷积神经网络 词嵌入 融合
下载PDF
LDA模型的优化及其主题数量选择研究——以科技文献为例 被引量:37
11
作者 王婷婷 韩满 王宇 《数据分析与知识发现》 CSSCI CSCD 北大核心 2018年第1期29-40,共12页
【目的】为提升传统LDA模型的主题识别性能,并给主题最优数目选择提供技术方案,提出基于自适应聚类的K-wrLDA模型。【方法】利用LDA和Word2Vec模型得出包含主题词概率信息及词义相关性的T-WV矩阵,并将传统LDA模型的主题数目选择问题转... 【目的】为提升传统LDA模型的主题识别性能,并给主题最优数目选择提供技术方案,提出基于自适应聚类的K-wrLDA模型。【方法】利用LDA和Word2Vec模型得出包含主题词概率信息及词义相关性的T-WV矩阵,并将传统LDA模型的主题数目选择问题转化为聚类效果评价问题,以内部指标伪F统计量作为目标函数,计算主题聚类数目的最优解,并对新旧两种模型的主题识别效果进行比较。【结果】经自适应聚类得出最优主题数量为33,且新模型的困惑度得分始终低于传统模型,主题识别效果对比显示新模型具有更好的凝聚性。【局限】在实证语料选取上获取单一主题下的科技文献,数据量不大。【结论】新模型具有更理想的主题识别能力,并能够自主计算最优主题数目。该模型作为对传统LDA模型的改进,可以应用于各领域的大规模语料中。 展开更多
关键词 主题模型 词嵌入 自适应聚类 困惑度
原文传递
基于词向量的Jaccard相似度算法 被引量:30
12
作者 田星 郑瑾 张祖平 《计算机科学》 CSCD 北大核心 2018年第7期186-189,共4页
通过对传统Jaccard算法的研究和改进,提出了一种基于词向量的Jaccard句子相似度算法。传统的Jaccard算法以句子的字面量为特征,因而在语义层面的相似度计算方面受到了一定的限制。而随着深度学习的兴起,尤其是词向量的提出,词语在计算... 通过对传统Jaccard算法的研究和改进,提出了一种基于词向量的Jaccard句子相似度算法。传统的Jaccard算法以句子的字面量为特征,因而在语义层面的相似度计算方面受到了一定的限制。而随着深度学习的兴起,尤其是词向量的提出,词语在计算机中的表示有了突破性的进展。该算法首先通过训练将每个词语映射为语义层面的高维向量,然后计算各个词向量之间的相似度,高于阈值α的作为共现部分,最终计算句子的相似度。实验表明,相较于传统的Jaccard算法,该算法在短文本相似度计算的准确率上有较明显的提升。 展开更多
关键词 词向量 Jaccard算法 句子相似度
下载PDF
基于词汇语义信息的文本相似度计算 被引量:27
13
作者 谷重阳 徐浩煜 +1 位作者 周晗 张俊杰 《计算机应用研究》 CSCD 北大核心 2018年第2期391-395,共5页
传统的文本相似度计算大多基于词匹配的方法,忽略了词汇语义信息,计算结果很大程度上取决于文本的词汇重复率。虽然分布式词向量可以有效表达词汇语义关系,但目前基于词向量的文本处理方法大多通过词汇串联等形式表示文本,无法体现词汇... 传统的文本相似度计算大多基于词匹配的方法,忽略了词汇语义信息,计算结果很大程度上取决于文本的词汇重复率。虽然分布式词向量可以有效表达词汇语义关系,但目前基于词向量的文本处理方法大多通过词汇串联等形式表示文本,无法体现词汇在语料库中的分布情况。针对以上问题,提出了一种新的计算方法。该方法认为基于统计的文本向量各元素之间存在相关性,且该相关性可通过词汇语义相似度表示。因此,利用词汇相似度改进了基于余弦公式的文本相似度计算方法。实验表明该方法在F1值和准确度评价标准上优于其他方法。 展开更多
关键词 文本相似度 词向量 词频—逆文档频率
下载PDF
融合卷积神经网络与层次化注意力网络的中文文本情感倾向性分析 被引量:25
14
作者 程艳 叶子铭 +2 位作者 王明文 张强 张光河 《中文信息学报》 CSCD 北大核心 2019年第1期133-142,共10页
文本情感倾向性分析是自然语言处理研究领域的一个基础问题。基于深度学习的模型是处理此问题的常用模型。而当前的多数深度学习模型在中文文本情感倾向性分析方面的应用存在两个问题:一是未能充分考虑到文本的层次化结构对情感倾向性... 文本情感倾向性分析是自然语言处理研究领域的一个基础问题。基于深度学习的模型是处理此问题的常用模型。而当前的多数深度学习模型在中文文本情感倾向性分析方面的应用存在两个问题:一是未能充分考虑到文本的层次化结构对情感倾向性判定的重要作用,二是传统的分词技术在处理文本时会产生歧义。该文针对这些问题基于卷积神经网络与层次化注意力网络的优点提出了一种深度学习模型C-HAN(Convolutional Neural Network-based and Hierarchical Attention Network-based Chinese Sentiment Classification Model),先用并行化卷积层学习词向量间的联系与组合形式,再将其结果输入到基本单元为双向循环神经网络的层次化注意力网络中判定情感倾向。实验表明:模型在中文评论数据集上倾向性分类准确率达到92.34%,和现有多个情感分析模型相比有所提升;此外,对于中文文本,选择使用字级别词向量作为原始特征会优于词级别词向量作为原始特征。 展开更多
关键词 卷积神经网络 层次化注意力网络 情感倾向性分析 词向量
下载PDF
基于循环和卷积神经网络的文本分类研究 被引量:24
15
作者 刘腾飞 于双元 +1 位作者 张洪涛 尹鸿峰 《软件》 2018年第1期64-69,共6页
文本表示是自然语言处理的基础工作,好的文本表示方法对文本分类等自然语言处理任务的性能起着决定性作用。本文描述了一个结合了循环网络和卷积网络的文本表示和分类网络模型。在该模型中,我们使用词向量作为输入,用循环网络对文档进... 文本表示是自然语言处理的基础工作,好的文本表示方法对文本分类等自然语言处理任务的性能起着决定性作用。本文描述了一个结合了循环网络和卷积网络的文本表示和分类网络模型。在该模型中,我们使用词向量作为输入,用循环网络对文档进行表示,然后采用卷积网络对文档进行有效的特征提取,再采用Softmax回归分类。循环网络能够捕捉到文档的中词序信息,而卷积网络能够很好的提取出有用的特征。我们在六个文本分类任务中测试本文所描述的网络模型,都取得了比先前的方法更出色的性能。 展开更多
关键词 自然语言处理 神经网络 表示学习 词向量 文本分类
下载PDF
基于词向量和条件随机场的领域术语识别方法 被引量:24
16
作者 冯艳红 于红 +1 位作者 孙庚 赵禹锦 《计算机应用》 CSCD 北大核心 2016年第11期3146-3151,共6页
针对基于统计特征的领域术语识别方法忽略了术语的语义和领域特性,从而影响识别结果这一问题,提出一种基于词向量和条件随机场(CRF)的领域术语识别方法。该方法利用词向量具有较强的语义表达能力、词语与领域术语之间的相似度具有较强... 针对基于统计特征的领域术语识别方法忽略了术语的语义和领域特性,从而影响识别结果这一问题,提出一种基于词向量和条件随机场(CRF)的领域术语识别方法。该方法利用词向量具有较强的语义表达能力、词语与领域术语之间的相似度具有较强的领域表达能力这一特点,在统计特征的基础上,增加了词语的词向量与领域术语的词向量之间的相似度特征,构成基于词向量的特征向量,并采用CRF方法综合这些特征实现了领域术语识别。最后在领域语料库和Sogou CA语料库上进行实验,识别结果的准确率、召回率和F测度分别达到了0.985 5、0.943 9和0.964 3,表明所提的领域术语识别方法取得了较好的效果。 展开更多
关键词 词向量 条件随机场 术语识别 相似度特征
下载PDF
基于深度学习的中文专利自动分类方法研究 被引量:23
17
作者 吕璐成 韩涛 +1 位作者 周健 赵亚娟 《图书情报工作》 CSSCI 北大核心 2020年第10期75-85,共11页
[目的/意义]面向当前国内专利审查和专利情报分析工作中对于海量专利分类的客观需求,设计了7种基于深度学习的专利自动分类方法,对比各种方法的分类效果,从而助力专利分类效率和效果的提升。[方法/过程]针对传统机器学习方法存在的缺陷... [目的/意义]面向当前国内专利审查和专利情报分析工作中对于海量专利分类的客观需求,设计了7种基于深度学习的专利自动分类方法,对比各种方法的分类效果,从而助力专利分类效率和效果的提升。[方法/过程]针对传统机器学习方法存在的缺陷,基于Word2Vec、CNN、RNN、Attention机制等深度学习技术,考虑专利文本语序特征、上下文特征以及分类关键特征,设计Word2Vec+TextCNN、Word2Vec+GRU、Word2Vec+BiGRU、Word2Vec+BiGRU+TextCNN等7种深度学习模型,以中国专利为例,选取IPC主分类号的"部"作为分类依据,对比这7种模型与3种传统分类模型在中文专利分类任务中的效果。[结果/结论]实证研究效果显示,采用考虑语序特征、上下文特征及强化关键特征的深度学习方法进行中文专利分类具有更优的分类效果。 展开更多
关键词 专利自动分类 深度学习 词嵌入 专利文本挖掘
原文传递
基于BILSTM_CRF的知识图谱实体抽取方法 被引量:23
18
作者 翟社平 段宏宇 李兆兆 《计算机应用与软件》 北大核心 2019年第5期269-274,280,共7页
针对传统知识图谱实体抽取方法需要大量人工特征和专家知识的问题,提出一种基于BILSTM_CRF模型的神经网络结构实体抽取方法。它既能使用双向长短时记忆网络BILSTM(Bidirectional Long Short-Term Memory)提取文本信息的特征,又可利用条... 针对传统知识图谱实体抽取方法需要大量人工特征和专家知识的问题,提出一种基于BILSTM_CRF模型的神经网络结构实体抽取方法。它既能使用双向长短时记忆网络BILSTM(Bidirectional Long Short-Term Memory)提取文本信息的特征,又可利用条件随机场CRF(Conditional Random Fields)衡量序列标注的联系。该方法对输入的文本进行建模,把句子中的每个词转换为词向量;利用BILSTM处理分布式向量得到句子特征;使用CRF标注并抽取实体,得到最终结果。实验结果表明,该方法的准确率和召回率更高,F1值提升约8%,具有更强的适用性。 展开更多
关键词 知识图谱 实体抽取 神经网络 词向量 BILSTM_CRF模型
下载PDF
基于情感词向量的微博情感分类 被引量:21
19
作者 杜慧 徐学可 +3 位作者 伍大勇 刘悦 余智华 程学旗 《中文信息学报》 CSCD 北大核心 2017年第3期170-176,共7页
该文提出了一种基于情感词向量的情感分类方法。词向量采用连续实数域上的固定维数向量来表示词汇,能够表达词汇丰富的语义信息。词向量的学习方法,如word2vec,能从大规模语料中通过上下文信息挖掘出潜藏的词语间语义关联。本文在从语... 该文提出了一种基于情感词向量的情感分类方法。词向量采用连续实数域上的固定维数向量来表示词汇,能够表达词汇丰富的语义信息。词向量的学习方法,如word2vec,能从大规模语料中通过上下文信息挖掘出潜藏的词语间语义关联。本文在从语料中学习得到的蕴含语义信息的词向量基础上,对其进行情感调整,得到同时考虑语义和情感倾向的词向量。对于一篇输入文本,基于情感词向量建立文本的特征表示,采用机器学习的方法对文本进行情感分类。该方法与基于词、N-gram及原始word2vec词向量构建文本表示的方法相比,情感分类准确率更高、性能和稳定性更好。 展开更多
关键词 情感分析 情感分类 词向量 机器学习
下载PDF
基于深度学习的论文个性化推荐算法 被引量:20
20
作者 王妍 唐杰 《中文信息学报》 CSCD 北大核心 2018年第4期114-119,共6页
该文基于学术搜索和数据挖掘平台Aminer向用户进行个性化推荐,提出了结合协同过滤推荐和基于内容推荐的混合模型,实验表明该算法可以有效解决新物品的推荐问题,即冷启动问题。其中在基于内容推荐的模型中,融合深度学习的方法,引进了词... 该文基于学术搜索和数据挖掘平台Aminer向用户进行个性化推荐,提出了结合协同过滤推荐和基于内容推荐的混合模型,实验表明该算法可以有效解决新物品的推荐问题,即冷启动问题。其中在基于内容推荐的模型中,融合深度学习的方法,引进了词向量模型,将用户和论文映射到用词向量空间,并使用WMD(Word Mover Distance)计算相似度。实验表明,与其他基线模型相比该文提出的推荐模型在准确率上显著提高了4%。 展开更多
关键词 个性化推荐 协同过滤 词向量
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部