A novel process utilizing vertical wells to enhance heavy oil recovery during steam assisted gravity drainage has been developed. In the vertical well steam assisted gravity drainage (VWSAGD) process shown in Figure 1...A novel process utilizing vertical wells to enhance heavy oil recovery during steam assisted gravity drainage has been developed. In the vertical well steam assisted gravity drainage (VWSAGD) process shown in Figure 1, the vertical well includes two production strings which are separated by three packers (one dual and two single packers): the short injection string (SIS) is attached to the bottom of the annulus and completed in the top quarter of the perforated formation, while the long production string (LPS) is attached to the bottom of the production tubing and completed in the bottom quarter of the perforated formation. The new process (VWSAGD) requires an initial start-up period (warm-up stage) where the steam is injected into both of the injection strings and production string for a specified period of time of about 14-30 days;then both strings are closed to injection for a specified time period of approximately 7 - 10 days (soaking period). After the initial warm-up and the soaking period, the long production string is opened for production, and the short injection string is opened to continuous steam injection for the rest of the specified simulation time. A commercial simulator (CMG-STAR Simulator) was used to study the performance of the new VWSAGD process. A sensitivity analysis was performed for the grid density, soaking time, steam quality, bottom hole producing pressure, steam injection rate, reservoir thickness, reservoir area, and horizontal to vertical permeability anisotropy. The results of this study have shown that the new VWSAGD process is more preferable for reservoir conditions such as high horizontal to vertical permeability ratio and thick reservoir oil zones.展开更多
由于缺乏可靠的温度剖面预测模型导致多产层油藏直定井温度剖面影响规律认识不清,使得基于分布式光纤温度监测(distributed temperature sensing,DTS)定量解释多产层油藏直定井产出剖面仍十分困难。鉴于此,通过建立考虑多种微量热效应...由于缺乏可靠的温度剖面预测模型导致多产层油藏直定井温度剖面影响规律认识不清,使得基于分布式光纤温度监测(distributed temperature sensing,DTS)定量解释多产层油藏直定井产出剖面仍十分困难。鉴于此,通过建立考虑多种微量热效应和非等温渗流的多产层油藏直定井温度剖面预测模型,模拟分析了不同单因素变化对多产层油藏直定井温度剖面的影响规律,并通过正交试验分析评价了油藏直定井温度剖面对各影响因素的敏感性程度,依次为:单井产量>渗透率>含水饱和度>井筒直径>原油密度>井筒倾斜角>储层导热系数,确定了影响油藏直定井温度剖面的主导因素为单井产量、渗透率和含水饱和度。研究结果为实现基于DTS数据定量解释多产层油藏直定井产出剖面、储层特征参数等奠定了理论基础。展开更多
文摘A novel process utilizing vertical wells to enhance heavy oil recovery during steam assisted gravity drainage has been developed. In the vertical well steam assisted gravity drainage (VWSAGD) process shown in Figure 1, the vertical well includes two production strings which are separated by three packers (one dual and two single packers): the short injection string (SIS) is attached to the bottom of the annulus and completed in the top quarter of the perforated formation, while the long production string (LPS) is attached to the bottom of the production tubing and completed in the bottom quarter of the perforated formation. The new process (VWSAGD) requires an initial start-up period (warm-up stage) where the steam is injected into both of the injection strings and production string for a specified period of time of about 14-30 days;then both strings are closed to injection for a specified time period of approximately 7 - 10 days (soaking period). After the initial warm-up and the soaking period, the long production string is opened for production, and the short injection string is opened to continuous steam injection for the rest of the specified simulation time. A commercial simulator (CMG-STAR Simulator) was used to study the performance of the new VWSAGD process. A sensitivity analysis was performed for the grid density, soaking time, steam quality, bottom hole producing pressure, steam injection rate, reservoir thickness, reservoir area, and horizontal to vertical permeability anisotropy. The results of this study have shown that the new VWSAGD process is more preferable for reservoir conditions such as high horizontal to vertical permeability ratio and thick reservoir oil zones.
文摘由于缺乏可靠的温度剖面预测模型导致多产层油藏直定井温度剖面影响规律认识不清,使得基于分布式光纤温度监测(distributed temperature sensing,DTS)定量解释多产层油藏直定井产出剖面仍十分困难。鉴于此,通过建立考虑多种微量热效应和非等温渗流的多产层油藏直定井温度剖面预测模型,模拟分析了不同单因素变化对多产层油藏直定井温度剖面的影响规律,并通过正交试验分析评价了油藏直定井温度剖面对各影响因素的敏感性程度,依次为:单井产量>渗透率>含水饱和度>井筒直径>原油密度>井筒倾斜角>储层导热系数,确定了影响油藏直定井温度剖面的主导因素为单井产量、渗透率和含水饱和度。研究结果为实现基于DTS数据定量解释多产层油藏直定井产出剖面、储层特征参数等奠定了理论基础。