For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updati...For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updating techniques regarding uncorrelated/correlated mode shapes.Casings structure is parametrically modeled by simplifying initial structural FE model and equivalently simulating mechanical characteristics.Uncorrelated modes between FE model and experiment are reasonably handled by adopting an objective function to recognize correct correlated modes pairs.The parametrized FE model is updated to effectively describe structural dynamic characteristics in respect of testing data.The model updating technology is firstly validated by the detailed FE model updating of one fixed–fixed beam structure in light of correlated/uncorrelated mode shapes and measured mode data.The PM-MUS is applied to the FE parametrized model updating of an aeroengine stator system(casings)which is constructed by the proposed parametric modeling approach.As revealed in this study,(A)the updated models by the proposed updating strategy and dynamic test data is accurate,and(B)the uncorrelated modes like close modes can be effectively handled and precisely identify the FE model mode associated the corresponding experimental mode,and(C)parametric modeling can enhance the dynamic modeling updating of complex structure in the accuracy of mode matching.The efforts of this study provide an efficient dynamic model updating strategy(PM-MUS)for aeroengine casings by parametric modeling and experimental test data regarding uncorrelated modes.展开更多
Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fund...Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as long as the local modes are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure. Therefore, in order to carry structural health monitoring into effect, we must (1) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.展开更多
Two coordination compounds [Pb4(BDT)3(OH)2(H2O)4].H2O (1) and [Mn(H20)6]·(HBDT)2.2H2O (2) [H2BDT= 5,5'-(1,4-phenylene)bis(1H-tetrazole)] had been hydrothermally synthesized. 1 and 2 had been ch...Two coordination compounds [Pb4(BDT)3(OH)2(H2O)4].H2O (1) and [Mn(H20)6]·(HBDT)2.2H2O (2) [H2BDT= 5,5'-(1,4-phenylene)bis(1H-tetrazole)] had been hydrothermally synthesized. 1 and 2 had been characterized by single-crystal X-ray diffraction, IR, elemental and thermal analyses. Structural analysis reveals that 1 exhibits 2D layer structure extended through BDT with two different coordination modes rings in transverse and vertical. 2 consists of [Mn(H2O)6]2+, free HBDT and water. In addition, 1 and 2 were explored as luminescent materials and additives to promote the thermal decomposition of ammonium perchlorate by differential scanning calorimetry.展开更多
基金co-supported by National Natural Science Foundation of China(Nos.51975124 and 51675179)Shanghai International Cooperation Project of One Belt and One Road of China(No.20110741700)Research Startup Fund of Fudan University(No.FDU38341)。
文摘For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updating techniques regarding uncorrelated/correlated mode shapes.Casings structure is parametrically modeled by simplifying initial structural FE model and equivalently simulating mechanical characteristics.Uncorrelated modes between FE model and experiment are reasonably handled by adopting an objective function to recognize correct correlated modes pairs.The parametrized FE model is updated to effectively describe structural dynamic characteristics in respect of testing data.The model updating technology is firstly validated by the detailed FE model updating of one fixed–fixed beam structure in light of correlated/uncorrelated mode shapes and measured mode data.The PM-MUS is applied to the FE parametrized model updating of an aeroengine stator system(casings)which is constructed by the proposed parametric modeling approach.As revealed in this study,(A)the updated models by the proposed updating strategy and dynamic test data is accurate,and(B)the uncorrelated modes like close modes can be effectively handled and precisely identify the FE model mode associated the corresponding experimental mode,and(C)parametric modeling can enhance the dynamic modeling updating of complex structure in the accuracy of mode matching.The efforts of this study provide an efficient dynamic model updating strategy(PM-MUS)for aeroengine casings by parametric modeling and experimental test data regarding uncorrelated modes.
文摘Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as long as the local modes are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure. Therefore, in order to carry structural health monitoring into effect, we must (1) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.
基金supported by the Defense Industrial Technology Development Program (Grant Nos.JCKY2018601B001,JCKY2019209C004,and JCKY2019205A006)the National Natural Science Foundation of China (Grant Nos.11432002,11772026,and 12002015)+1 种基金the Aeronautical Science Foundation of China (Grant No.20182951014)the Beijing Municipal Science and Technology Commission (Grant No.Z191100004619006).
基金Project supported by the National Natural Science Foundation of China (No. 20873100), and the Natural Science Foundation of Shaanxi Province (Nos. FF10091, SJ08B09).
文摘Two coordination compounds [Pb4(BDT)3(OH)2(H2O)4].H2O (1) and [Mn(H20)6]·(HBDT)2.2H2O (2) [H2BDT= 5,5'-(1,4-phenylene)bis(1H-tetrazole)] had been hydrothermally synthesized. 1 and 2 had been characterized by single-crystal X-ray diffraction, IR, elemental and thermal analyses. Structural analysis reveals that 1 exhibits 2D layer structure extended through BDT with two different coordination modes rings in transverse and vertical. 2 consists of [Mn(H2O)6]2+, free HBDT and water. In addition, 1 and 2 were explored as luminescent materials and additives to promote the thermal decomposition of ammonium perchlorate by differential scanning calorimetry.