The changing patterns of watersheds in a landscape, driven by human activities, play an important role in non-point source pollution processes. This paper aims to improve the location-weighted landscape contrast index...The changing patterns of watersheds in a landscape, driven by human activities, play an important role in non-point source pollution processes. This paper aims to improve the location-weighted landscape contrast index using remote sensing and GIS technology to account for the effects of scale and ecological processes. The hydrological response unit(HRU) with a single land use and soil type was used as the smallest unit. The relationship between the landscape index and typical ecological processes was established by describing the influence of the landscape pattern on non-point source pollution. To verify the research method, this paper used the Yanshi River basin as a study area. The results showed that the relative intensity of non-point source pollution in different regions of the watershed and the location-weighted landscape contrast index based on the minimum HRU can qualitatively reflect the risk of regional nutrient loss.展开更多
The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing throug...The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.展开更多
基金Supported by the National Key R&D Programs of China(Nos.2017YFB0504201,2015BAJ02B)the National Natural Science Foundation of China(Nos.61473286,61375002)the Natural Science Foundation of Hainan Province(No.20164178)
文摘The changing patterns of watersheds in a landscape, driven by human activities, play an important role in non-point source pollution processes. This paper aims to improve the location-weighted landscape contrast index using remote sensing and GIS technology to account for the effects of scale and ecological processes. The hydrological response unit(HRU) with a single land use and soil type was used as the smallest unit. The relationship between the landscape index and typical ecological processes was established by describing the influence of the landscape pattern on non-point source pollution. To verify the research method, this paper used the Yanshi River basin as a study area. The results showed that the relative intensity of non-point source pollution in different regions of the watershed and the location-weighted landscape contrast index based on the minimum HRU can qualitatively reflect the risk of regional nutrient loss.
文摘The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.