Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are...Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.展开更多
Fractional-slot concentrated-coil electric machines are often used in those applications where a number of rotor poles close to the number of stator slots is required. A major criticality of such machines is the occur...Fractional-slot concentrated-coil electric machines are often used in those applications where a number of rotor poles close to the number of stator slots is required. A major criticality of such machines is the occurrence of large air-gap field harmonics due to winding distribution and to slotting effects. Predicting such harmonics analytically with adequate accuracy is a good way to significantly speed-up subsequent investigations, concerning the rotor effects of the field harmonics in terms of rotor losses. This paper proposes different analytical formulations for this purpose, covering the case of a generic number of stator phases and differing by how slotting effects are taken into account. The various approaches proposed are evaluated by comparing analytical results with finite-element analysis computations on a sample machine geometries.展开更多
针对三相鼠笼异步电机无位置传感器快速傅立叶变换(fast Fourier transformation,FFT)测速方法需要预先知道转子槽数,且测试精度易受噪声干扰和采集时长等因素的影响,提出一种基于奇异值分解-Prony(singular value decomposition-Prony,...针对三相鼠笼异步电机无位置传感器快速傅立叶变换(fast Fourier transformation,FFT)测速方法需要预先知道转子槽数,且测试精度易受噪声干扰和采集时长等因素的影响,提出一种基于奇异值分解-Prony(singular value decomposition-Prony,SVD-Prony)算法的无位置传感器高精度转速测量技术。运用电机学相关理论,研究转子槽谐波测速机理,并给出整数倍率转子槽数的计算方法。在分析并明确定子电流噪声影响和FFT法存在检测精度受采样时长限制等问题的基础上,研究基于奇异值增长率的SVD滤波方法和用于辨识转子槽谐波的Prony算法,并以Y160M-4型电机为研究对象,在不同运行状态下对该技术的适应性进行分析。在此基础上,构建相关物理测试平台,对YE90S-2型电机进行实测。结果表明,在相同采集情况下,所提方法测试绝对误差仅为FFT测速方法的几分之一,检测精度大幅提高。展开更多
文摘Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.
文摘Fractional-slot concentrated-coil electric machines are often used in those applications where a number of rotor poles close to the number of stator slots is required. A major criticality of such machines is the occurrence of large air-gap field harmonics due to winding distribution and to slotting effects. Predicting such harmonics analytically with adequate accuracy is a good way to significantly speed-up subsequent investigations, concerning the rotor effects of the field harmonics in terms of rotor losses. This paper proposes different analytical formulations for this purpose, covering the case of a generic number of stator phases and differing by how slotting effects are taken into account. The various approaches proposed are evaluated by comparing analytical results with finite-element analysis computations on a sample machine geometries.
基金Textile Light Foundation Research Fund Project,China (No.JS201505)。
文摘针对三相鼠笼异步电机无位置传感器快速傅立叶变换(fast Fourier transformation,FFT)测速方法需要预先知道转子槽数,且测试精度易受噪声干扰和采集时长等因素的影响,提出一种基于奇异值分解-Prony(singular value decomposition-Prony,SVD-Prony)算法的无位置传感器高精度转速测量技术。运用电机学相关理论,研究转子槽谐波测速机理,并给出整数倍率转子槽数的计算方法。在分析并明确定子电流噪声影响和FFT法存在检测精度受采样时长限制等问题的基础上,研究基于奇异值增长率的SVD滤波方法和用于辨识转子槽谐波的Prony算法,并以Y160M-4型电机为研究对象,在不同运行状态下对该技术的适应性进行分析。在此基础上,构建相关物理测试平台,对YE90S-2型电机进行实测。结果表明,在相同采集情况下,所提方法测试绝对误差仅为FFT测速方法的几分之一,检测精度大幅提高。