Cellular Manufacturing System (CMS) is an application of Group Technology (GT) that allows decomposing a manu-facturing system into subsystems. Grouping the machines and parts in a cellular manufacturing system, based...Cellular Manufacturing System (CMS) is an application of Group Technology (GT) that allows decomposing a manu-facturing system into subsystems. Grouping the machines and parts in a cellular manufacturing system, based on simi-larities is known as cell formation problem (CFP) which is an NP-hard problem. In this paper, a mathematical model is proposed for CFP and is solved using the Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Simulated Annealing (SA) meta-heuristic methods and the results are compared. The computational results show that the GA method is more effective in solving the model.展开更多
Rudolfer [1] studied properties and estimation of a state Markov chain binomial (MCB) model of extra-binomial variation. The variance expression in Lemma 4 is stated without proof but is incorrect, resulting in both L...Rudolfer [1] studied properties and estimation of a state Markov chain binomial (MCB) model of extra-binomial variation. The variance expression in Lemma 4 is stated without proof but is incorrect, resulting in both Lemma 5 and Theorem 2 also being incorrect. These errors were corrected in Rudolfer [2]. In Sections 2 and 3 of this paper, a new derivation of the variance expression in a setting involving the natural parameters ?is presented and the relation of the MCB model to Edwards’ [3] probability generating function (pgf) approach is discussed. Section 4 deals with estimation of the model parameters. Estimation by the maximum likelihood method is difficult for a larger number n of Markov trials due to the complexity of the calculation of probabilities using Equation (3.2) of Rudolfer [1]. In this section, the exact maximum likelihood estimation of model parameters is obtained utilizing a sequence of Markov trials each involving n observations from a {0,1}-?state MCB model and may be used for any value of n. Two examples in Section 5 illustrate the usefulness of the MCB model. The first example gives corrected results for Skellam’s Brassica data while the second applies the “sequence approach” to data from Crouchley and Pickles [4].展开更多
Online question and answer(Q&A)communities,which allow users to exchange knowledge by asking and answering questions,have become increasingly popular.As a result of user active participation,these communities stor...Online question and answer(Q&A)communities,which allow users to exchange knowledge by asking and answering questions,have become increasingly popular.As a result of user active participation,these communities store overwhelming volumes of information.However,existing related methods are unable to meet community operators’needs for analyzing multi-dimensional Q&A sequences and understanding user behavior.In this paper,collaborating with domain experts in online community,we present a system,VisQAC,which explores the patterns of Q&A sequence and user behavior.In the system,a novel visual design is proposed,which is combined with flexible mapping measures for analyzing critical characteristics of sequence data.Moreover,a timeline visualization method is designed to visualize data with categorical attributes and its correlation can be displayed flexibly by choosing time mode and time granularity.The usefulness and effectiveness of the system are demonstrated with several case studies of VisQAC with community operators based on the Zhihu dataset.Our evaluation shows that VisQAC is beneficial to the understanding of Q&A sequence and associated user behavior.展开更多
文摘Cellular Manufacturing System (CMS) is an application of Group Technology (GT) that allows decomposing a manu-facturing system into subsystems. Grouping the machines and parts in a cellular manufacturing system, based on simi-larities is known as cell formation problem (CFP) which is an NP-hard problem. In this paper, a mathematical model is proposed for CFP and is solved using the Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Simulated Annealing (SA) meta-heuristic methods and the results are compared. The computational results show that the GA method is more effective in solving the model.
文摘Rudolfer [1] studied properties and estimation of a state Markov chain binomial (MCB) model of extra-binomial variation. The variance expression in Lemma 4 is stated without proof but is incorrect, resulting in both Lemma 5 and Theorem 2 also being incorrect. These errors were corrected in Rudolfer [2]. In Sections 2 and 3 of this paper, a new derivation of the variance expression in a setting involving the natural parameters ?is presented and the relation of the MCB model to Edwards’ [3] probability generating function (pgf) approach is discussed. Section 4 deals with estimation of the model parameters. Estimation by the maximum likelihood method is difficult for a larger number n of Markov trials due to the complexity of the calculation of probabilities using Equation (3.2) of Rudolfer [1]. In this section, the exact maximum likelihood estimation of model parameters is obtained utilizing a sequence of Markov trials each involving n observations from a {0,1}-?state MCB model and may be used for any value of n. Two examples in Section 5 illustrate the usefulness of the MCB model. The first example gives corrected results for Skellam’s Brassica data while the second applies the “sequence approach” to data from Crouchley and Pickles [4].
基金Supported by Major Development Program of Sichuan Province(18ZDYF1790)Key Technology R&D Program of Chengdu City(2015-HM01-00484-SF)the National Science and Technology Major Project(2018ZX100201AA-002-004)
文摘Online question and answer(Q&A)communities,which allow users to exchange knowledge by asking and answering questions,have become increasingly popular.As a result of user active participation,these communities store overwhelming volumes of information.However,existing related methods are unable to meet community operators’needs for analyzing multi-dimensional Q&A sequences and understanding user behavior.In this paper,collaborating with domain experts in online community,we present a system,VisQAC,which explores the patterns of Q&A sequence and user behavior.In the system,a novel visual design is proposed,which is combined with flexible mapping measures for analyzing critical characteristics of sequence data.Moreover,a timeline visualization method is designed to visualize data with categorical attributes and its correlation can be displayed flexibly by choosing time mode and time granularity.The usefulness and effectiveness of the system are demonstrated with several case studies of VisQAC with community operators based on the Zhihu dataset.Our evaluation shows that VisQAC is beneficial to the understanding of Q&A sequence and associated user behavior.