This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a...This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.展开更多
Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
This study focuses on rapidly determining seismic intensity maps of earthquakes because it offers fundamental information for effective emergency rescue and subsequent scientific research,and remains challenging to ac...This study focuses on rapidly determining seismic intensity maps of earthquakes because it offers fundamental information for effective emergency rescue and subsequent scientific research,and remains challenging to accurately determine seismic intensity map in regions with sparse instrumental observations.Here we applied a novel method that consisted of array technology(backprojection),ground-motion prediction equations,and site corrections,to estimate the seismic intensity maps of the 2021 Mw 7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.We used seismic data recorded at European stations to back-project the source processes of the 2021 Mw7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.The back-projected energy radiations were then used as subevents or used to define the fault geometry.Summing the contributions of each subevent or estimating the shortest distances from each site to the rupture fault,we obtained the ground motion(PGA and PGV)for each site under rock site conditions.The estimated ground motions were corrected at each site for local site amplification according to the Vs30 database.Our estimated seismic intensity maps and field reports showed high similarity,which further validated the effectiveness of the novel approach,and pushed the limit of earthquake size down to~M 6.Such efforts would substantially help in the fast and accurate evaluation of earthquake damage,and precise rescue efforts.展开更多
This paper presents a random physical model of seismic ground motion field on a specific local engineering site.With this model,artificial ground motions which are consistent with realistic records at SMART-1 array on...This paper presents a random physical model of seismic ground motion field on a specific local engineering site.With this model,artificial ground motions which are consistent with realistic records at SMART-1 array on spatial correlation are synthesized.A two-scale modeling method of seismic random field is proposed.In large scale,the seismic ground motion field on bedrock surface is simplified to a two-dimensional spherical wave field based on the seismic point source and homogeneous isotropic media model.In small scale,the seismic ground motion field on the engineering site has a plane waveform.By introducing the physical models of seismic source,path and local site and considering the randomness of the basic physical parameters,the random model of seismic ground motion field is completed in a random functional form.This model is applied to simulation of the acceleration records at SMART-1 array by using the superposition method of wave group.展开更多
The rise of high-speed railway induces an increased probability of serious derailment accidents of operating high-speed trains during earthquakes.A two-and-half-dimensional finite element model(2.5D FEM)was developed ...The rise of high-speed railway induces an increased probability of serious derailment accidents of operating high-speed trains during earthquakes.A two-and-half-dimensional finite element model(2.5D FEM)was developed to investigate the ground vibration under combined seismic and high-speed train loads.Numerical examples were demonstrated and the proposed method was turned out to provide an effective means for estimating ground vibration caused by high-speed train load during earthquakes.The dynamic ground displacement caused by combined seismic and high-speed train loads increases with the increase of the train speed,and decreases with the increase of the stiffness of ground soil.Compared with the seismic load alone,the coupling effect of the seismic and high-speed train loads results in the low-frequency amplification of ground vibration.The moving train load dominants the medium–high frequency contents of the ground vibration induced by combined loads.It is observed that the coupling effects are significant as the train speed is higher than a critical speed.The critical train speed increases with the increase of the ground stiffness and the intensity of the input earthquake motion.展开更多
基金Major Research Plan of National Natural Science Foundation of China Under Grant No.90815009National Natural Science Foundation of China Under Grant No.50378031 and 50178027Western Transport Construction Technology Projects Under Grant No.2009318000100
文摘This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
基金supported by the Fundamental Research Funds in the Institute of Earthquake Science,China Earthquake Administration(No.2020IESLZ05)the National Key R&D Program of the Republic of China(Nos.2017YFC1500906 and 2018YFC0603500)the National Natural Science Foundation of China(Nos.41922025 and41874062)。
文摘This study focuses on rapidly determining seismic intensity maps of earthquakes because it offers fundamental information for effective emergency rescue and subsequent scientific research,and remains challenging to accurately determine seismic intensity map in regions with sparse instrumental observations.Here we applied a novel method that consisted of array technology(backprojection),ground-motion prediction equations,and site corrections,to estimate the seismic intensity maps of the 2021 Mw 7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.We used seismic data recorded at European stations to back-project the source processes of the 2021 Mw7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.The back-projected energy radiations were then used as subevents or used to define the fault geometry.Summing the contributions of each subevent or estimating the shortest distances from each site to the rupture fault,we obtained the ground motion(PGA and PGV)for each site under rock site conditions.The estimated ground motions were corrected at each site for local site amplification according to the Vs30 database.Our estimated seismic intensity maps and field reports showed high similarity,which further validated the effectiveness of the novel approach,and pushed the limit of earthquake size down to~M 6.Such efforts would substantially help in the fast and accurate evaluation of earthquake damage,and precise rescue efforts.
基金supported by the Funds for Creative Research Groups of China (Grant No. 50621062)
文摘This paper presents a random physical model of seismic ground motion field on a specific local engineering site.With this model,artificial ground motions which are consistent with realistic records at SMART-1 array on spatial correlation are synthesized.A two-scale modeling method of seismic random field is proposed.In large scale,the seismic ground motion field on bedrock surface is simplified to a two-dimensional spherical wave field based on the seismic point source and homogeneous isotropic media model.In small scale,the seismic ground motion field on the engineering site has a plane waveform.By introducing the physical models of seismic source,path and local site and considering the randomness of the basic physical parameters,the random model of seismic ground motion field is completed in a random functional form.This model is applied to simulation of the acceleration records at SMART-1 array by using the superposition method of wave group.
基金supported by National Natural Science Foundation of China(Grant Nos:41372271 and 51978510).
文摘The rise of high-speed railway induces an increased probability of serious derailment accidents of operating high-speed trains during earthquakes.A two-and-half-dimensional finite element model(2.5D FEM)was developed to investigate the ground vibration under combined seismic and high-speed train loads.Numerical examples were demonstrated and the proposed method was turned out to provide an effective means for estimating ground vibration caused by high-speed train load during earthquakes.The dynamic ground displacement caused by combined seismic and high-speed train loads increases with the increase of the train speed,and decreases with the increase of the stiffness of ground soil.Compared with the seismic load alone,the coupling effect of the seismic and high-speed train loads results in the low-frequency amplification of ground vibration.The moving train load dominants the medium–high frequency contents of the ground vibration induced by combined loads.It is observed that the coupling effects are significant as the train speed is higher than a critical speed.The critical train speed increases with the increase of the ground stiffness and the intensity of the input earthquake motion.