The mean onset and withdrawal of summer rainy season over the Indochina Peninsula were investigated using 5-day averaged rainfall data (1975-87). The mean seasonal transition process during onset and retreat phases in...The mean onset and withdrawal of summer rainy season over the Indochina Peninsula were investigated using 5-day averaged rainfall data (1975-87). The mean seasonal transition process during onset and retreat phases in Indochina, India and the South China Sea is also examined using 5-day mean OLR (1975-87) and 850 hPa wind (1980-88) data. It was found that the onset of summer rainy season begins earlier in the inland region of Indochina (Thailand) in late April to early May than in the coastal region along the Bay of Bengal. This early onset of rainy season is due to pre-monsoon rain under the mid-latitude westerly wind regime. The full summer monsoon circulation begins to establish in mid-May, causing active convective activity both over the west coast of Indochina and the central South China Sea. In case of withdrawal, the earliest retreat of summer rainy season is found in the central northern part of Indochina in late September. The wind field, on the other hand, already changes to easterlies in the northern South China Sea in early September. This easterly wind system covers the eastern part of Indochina where post-monsoon rain is still active. In late October, the wind field turns to winter time situation, but post monsoon rain still continues in the southern part of the Indochina Peninsula until late November.展开更多
Using NCEP/NCAR reanalysis data for the period of 1957-2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are ...Using NCEP/NCAR reanalysis data for the period of 1957-2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are investigated in this paper. The basic features of the seasonal transition of VIMT from winter to summer are the establishment of the summertime "great moisture river" pattern (named the GMR pattern) and its eastward expansion, associated with a series of climatological events which occurred in some "key periods", which include the occurrence of the notable southerly VIMT over the Indochina Peninsula in mid March, the activity of the low VIMT vortex around Sri Lanka in late April, and the onset of the South China Sea summer monsoon in mid May, among others. However, during the transition from summer to winter, the characteristics are mainly exhibited by the establishment of the easterly VIMT belt located in the tropical area, accompanied by some events occurring in "key periods". Further analyses disclose a great difference between the Indian and East Asian monsoon regions when viewed from the meridional migration of the westerly VIMT during the seasonal change process, according to which the Asian monsoon region can be easily divided into two parts along the western side of the Indochina Peninsula and it may also denote different formation mechanisms between the two regions.展开更多
本文根据季节转换前后副高脊面附近经向温度梯度变号的本质,利用相关分析和合成分析等方法研究了季节转换年际变化与外部影响因子的联系.结果表明,冬春季青藏高原热状况和ENSO(El Ni o/Southern Oscillation,厄尔尼诺/南方涛动)是决定...本文根据季节转换前后副高脊面附近经向温度梯度变号的本质,利用相关分析和合成分析等方法研究了季节转换年际变化与外部影响因子的联系.结果表明,冬春季青藏高原热状况和ENSO(El Ni o/Southern Oscillation,厄尔尼诺/南方涛动)是决定亚洲季风区季节转换年际变化的主要因素.当冬、春季海温呈现El Ni o异常时,Walker环流减弱,于是西太平洋暖池区对流活动受到抑制,而赤道东太平洋对流活动加强则强迫赤道印度洋地区产生绝热下沉运动,使得印度洋地区大气偏暖,结果增大了南北向温度梯度,季节转换往往偏晚.反之,季节转换偏早.初春高原上空对流层中高层的气温异常对于判断季节转换迟早有很好的指示意义.展开更多
By employing a five-layer seasonal numerical weather prediction model and utilizing the National Meteorological Center (NMC) objective analysis data on May 10,1991 as the initial field,three numerical experiments——d...By employing a five-layer seasonal numerical weather prediction model and utilizing the National Meteorological Center (NMC) objective analysis data on May 10,1991 as the initial field,three numerical experiments——diabatic with orography,adiabatic with orography and adiabatic without orography——have been carried out to investigate the dy- namic and thermodynamic effects of the Qinghai-Xizang Plateau (hereafter the Plateau) on the seasonal transition in the early summer in East Asia.The results show that the typical seasonal transition features such as the northward shift of the subtropical westerly jet stream,the adjustment of the long-wave in middle and high latitudes and the changes of the circulation in the lower troposphere can be well simulated,if the dynamic and thermodynamic effects of the Plateau are both considered in the model as in the experiment adiabatic with orography.In other two experiments,it is failed to simulate out the seasonal transition features. The results also show that the thermodynamic effect of the Plateau acts on the atmosphere as a gradually enhanced heating source in the early summer,which makes the air temperature in 500 hPa over the Plateau increase by nearly 10℃ in a month and accelerates the northward shift of the subtropical westerly jet stream about seven latitudes more north- ward in twenty days and helps the shifted jet maintain at the northern periphery of the Plateau.It is also helpful to the formation and maintenance of the Lake Balchas trough and the northward and westward extension of the Pacific subtropical high.On the other hand,the dynamic effect of the Plateau weakens the northward shift of the subtropical westerly jet stream and barricades the westward extension of the Pacific subtropical high.If only the dynamic effect of the Plateau is considered in the model without consideration of the thermodynamic effect of the Plateau,not only the shifted jet withdraws southward but also the simulated Lake Balchas trough is 10 longitudes more eastward than that in 展开更多
The NCEP/NCAR reanalysis datasets and Climate Prediction Center(CPC) Merged Analysis of Precipitation(CMAP) rain data are used to investigate the large scale seasonal transition of East Asian subtropical monsoon(EASM)...The NCEP/NCAR reanalysis datasets and Climate Prediction Center(CPC) Merged Analysis of Precipitation(CMAP) rain data are used to investigate the large scale seasonal transition of East Asian subtropical monsoon(EASM) and its possible mechanism.The key region of EASM is defined according to the seasonal transition feature of meridional wind.By combining the 'thermal wind' formula and the 'thermal adaptation' equation,a new 'thermal-wind-precipitation' relation is deduced.The area mean wind directions and thermal advections in different seasons are analyzed and it is shown that in summer(winter) monsoon period,the averaged wind direction in the EASM region varies clockwise(anticlockwise) with altitude,and the EASM region is dominated by warm(cold) advection.The seasonal transition of the wind direction at different levels and the corresponding meridional circulation consistently indicates that the subtropical summer monsoon is established between the end of March and the beginning of April.Finally,a conceptual schematic explanation for the mechanism of seasonal transition of EASM is proposed.展开更多
Climatological characteristics of subtropical anticyclone structure during seasonal transition are investigated based on NCEP/NCAR reanalysis data.The ridge-surface of subtropical anticyclone is defined by the boundar...Climatological characteristics of subtropical anticyclone structure during seasonal transition are investigated based on NCEP/NCAR reanalysis data.The ridge-surface of subtropical anticyclone is defined by the boundary surface between westerly to the north and easterly to the south (WEB in brief).In Afro-Asian monsoon area,the subtropical high in troposphere whose ridgelines are consecutive in wintertime takes on relatively symmetrical and zonal structure,the WEB tilts southward with increasing height.In summer,the subtropical high ridgelines are discontinuous at low levels and continuous at upper levels,the WEB tilts northward from the bottom up.Under the constraint of thermal wind relation,the WEB usually tilts toward warmer zone.May is the period when subtropical high modality most significantly varies.The structure and properties of subtropical high during seasonal transition are different from area to area.A new concept 'seasonal transition axis' is proposed based on formation and variation of the vertical ridge axis of subtropical anticyclone.The subtropical high of summer pattern firstly occurs over eastern Bay of Bengal in the beginning of May.then stabilizes over eastern Bay of Bengal,Indo-China,and western South China Sea in the 3rd pentad of May,it exists over the South China Sea in the 4th- 5th pentad of May and establishes over central India in the 1st-2nd pentad of June.The three consequential stages when summer modal subtropical high occurs correspond to that of Asian summer monsoon onset,respectively.To a great extent,the summer monsoon onset over the Bay of Bengal depends on the reversal of meridional temperature gradient in vicinity of the WEB in upper troposphere.The meridional temperature gradient at middle-upper levels in troposphere can be used as a good indicator for measuring the seasonal transition and Asian monsoon onset.展开更多
文摘The mean onset and withdrawal of summer rainy season over the Indochina Peninsula were investigated using 5-day averaged rainfall data (1975-87). The mean seasonal transition process during onset and retreat phases in Indochina, India and the South China Sea is also examined using 5-day mean OLR (1975-87) and 850 hPa wind (1980-88) data. It was found that the onset of summer rainy season begins earlier in the inland region of Indochina (Thailand) in late April to early May than in the coastal region along the Bay of Bengal. This early onset of rainy season is due to pre-monsoon rain under the mid-latitude westerly wind regime. The full summer monsoon circulation begins to establish in mid-May, causing active convective activity both over the west coast of Indochina and the central South China Sea. In case of withdrawal, the earliest retreat of summer rainy season is found in the central northern part of Indochina in late September. The wind field, on the other hand, already changes to easterlies in the northern South China Sea in early September. This easterly wind system covers the eastern part of Indochina where post-monsoon rain is still active. In late October, the wind field turns to winter time situation, but post monsoon rain still continues in the southern part of the Indochina Peninsula until late November.
基金This research was supported by the National Natural Science Foundation of China(Nos.40475021 and 40375025)the Natural Science Foundation of Guangdong Province,China(No.0400391).
文摘Using NCEP/NCAR reanalysis data for the period of 1957-2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are investigated in this paper. The basic features of the seasonal transition of VIMT from winter to summer are the establishment of the summertime "great moisture river" pattern (named the GMR pattern) and its eastward expansion, associated with a series of climatological events which occurred in some "key periods", which include the occurrence of the notable southerly VIMT over the Indochina Peninsula in mid March, the activity of the low VIMT vortex around Sri Lanka in late April, and the onset of the South China Sea summer monsoon in mid May, among others. However, during the transition from summer to winter, the characteristics are mainly exhibited by the establishment of the easterly VIMT belt located in the tropical area, accompanied by some events occurring in "key periods". Further analyses disclose a great difference between the Indian and East Asian monsoon regions when viewed from the meridional migration of the westerly VIMT during the seasonal change process, according to which the Asian monsoon region can be easily divided into two parts along the western side of the Indochina Peninsula and it may also denote different formation mechanisms between the two regions.
文摘本文根据季节转换前后副高脊面附近经向温度梯度变号的本质,利用相关分析和合成分析等方法研究了季节转换年际变化与外部影响因子的联系.结果表明,冬春季青藏高原热状况和ENSO(El Ni o/Southern Oscillation,厄尔尼诺/南方涛动)是决定亚洲季风区季节转换年际变化的主要因素.当冬、春季海温呈现El Ni o异常时,Walker环流减弱,于是西太平洋暖池区对流活动受到抑制,而赤道东太平洋对流活动加强则强迫赤道印度洋地区产生绝热下沉运动,使得印度洋地区大气偏暖,结果增大了南北向温度梯度,季节转换往往偏晚.反之,季节转换偏早.初春高原上空对流层中高层的气温异常对于判断季节转换迟早有很好的指示意义.
文摘By employing a five-layer seasonal numerical weather prediction model and utilizing the National Meteorological Center (NMC) objective analysis data on May 10,1991 as the initial field,three numerical experiments——diabatic with orography,adiabatic with orography and adiabatic without orography——have been carried out to investigate the dy- namic and thermodynamic effects of the Qinghai-Xizang Plateau (hereafter the Plateau) on the seasonal transition in the early summer in East Asia.The results show that the typical seasonal transition features such as the northward shift of the subtropical westerly jet stream,the adjustment of the long-wave in middle and high latitudes and the changes of the circulation in the lower troposphere can be well simulated,if the dynamic and thermodynamic effects of the Plateau are both considered in the model as in the experiment adiabatic with orography.In other two experiments,it is failed to simulate out the seasonal transition features. The results also show that the thermodynamic effect of the Plateau acts on the atmosphere as a gradually enhanced heating source in the early summer,which makes the air temperature in 500 hPa over the Plateau increase by nearly 10℃ in a month and accelerates the northward shift of the subtropical westerly jet stream about seven latitudes more north- ward in twenty days and helps the shifted jet maintain at the northern periphery of the Plateau.It is also helpful to the formation and maintenance of the Lake Balchas trough and the northward and westward extension of the Pacific subtropical high.On the other hand,the dynamic effect of the Plateau weakens the northward shift of the subtropical westerly jet stream and barricades the westward extension of the Pacific subtropical high.If only the dynamic effect of the Plateau is considered in the model without consideration of the thermodynamic effect of the Plateau,not only the shifted jet withdraws southward but also the simulated Lake Balchas trough is 10 longitudes more eastward than that in
基金National Natural Science Foundation of China (41075068,40905044)
文摘The NCEP/NCAR reanalysis datasets and Climate Prediction Center(CPC) Merged Analysis of Precipitation(CMAP) rain data are used to investigate the large scale seasonal transition of East Asian subtropical monsoon(EASM) and its possible mechanism.The key region of EASM is defined according to the seasonal transition feature of meridional wind.By combining the 'thermal wind' formula and the 'thermal adaptation' equation,a new 'thermal-wind-precipitation' relation is deduced.The area mean wind directions and thermal advections in different seasons are analyzed and it is shown that in summer(winter) monsoon period,the averaged wind direction in the EASM region varies clockwise(anticlockwise) with altitude,and the EASM region is dominated by warm(cold) advection.The seasonal transition of the wind direction at different levels and the corresponding meridional circulation consistently indicates that the subtropical summer monsoon is established between the end of March and the beginning of April.Finally,a conceptual schematic explanation for the mechanism of seasonal transition of EASM is proposed.
基金National Key Program for Developing Basic Sciences(G1998040900)National Natural Science Foundation of China(40135020,49905002)+1 种基金Chinese Academy of Sciences(ZKCX2-SW-210)LASG Foundation(40023001)
文摘Climatological characteristics of subtropical anticyclone structure during seasonal transition are investigated based on NCEP/NCAR reanalysis data.The ridge-surface of subtropical anticyclone is defined by the boundary surface between westerly to the north and easterly to the south (WEB in brief).In Afro-Asian monsoon area,the subtropical high in troposphere whose ridgelines are consecutive in wintertime takes on relatively symmetrical and zonal structure,the WEB tilts southward with increasing height.In summer,the subtropical high ridgelines are discontinuous at low levels and continuous at upper levels,the WEB tilts northward from the bottom up.Under the constraint of thermal wind relation,the WEB usually tilts toward warmer zone.May is the period when subtropical high modality most significantly varies.The structure and properties of subtropical high during seasonal transition are different from area to area.A new concept 'seasonal transition axis' is proposed based on formation and variation of the vertical ridge axis of subtropical anticyclone.The subtropical high of summer pattern firstly occurs over eastern Bay of Bengal in the beginning of May.then stabilizes over eastern Bay of Bengal,Indo-China,and western South China Sea in the 3rd pentad of May,it exists over the South China Sea in the 4th- 5th pentad of May and establishes over central India in the 1st-2nd pentad of June.The three consequential stages when summer modal subtropical high occurs correspond to that of Asian summer monsoon onset,respectively.To a great extent,the summer monsoon onset over the Bay of Bengal depends on the reversal of meridional temperature gradient in vicinity of the WEB in upper troposphere.The meridional temperature gradient at middle-upper levels in troposphere can be used as a good indicator for measuring the seasonal transition and Asian monsoon onset.