Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However...Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.展开更多
This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robu...This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate rollover detection, a new method is proposed to compute the time to rollover(TTR) using the load transfer ratio(LTR). The nonlinear model, deduced from the vehicle lateral and roll dynamics, is represented by a Takagi-Sugeno(T-S) fuzzy model. This representation is used to account for the nonlinearities of lateral cornering forces. The proposed T-S observer is designed with unmeasurable premise variables to cater for non-availability of the slip angles measurement. The proposed approach is evaluated using Car Sim simulator under different driving scenarios. Simulation results show good efficiency of the proposed T-S observer and the rollover detection method.展开更多
基金supported by Open Research Fund of State Key Laboratory of Automobile Dynamics Simulation, China (Grant No. 20101103)National Natural Science Foundation of China (Grant No. 51075176)
文摘Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.
基金supported by the"Conseil Régional de Picardie"and the European Regional Development Fund within the framework of the project"SEDVAC"
文摘This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate rollover detection, a new method is proposed to compute the time to rollover(TTR) using the load transfer ratio(LTR). The nonlinear model, deduced from the vehicle lateral and roll dynamics, is represented by a Takagi-Sugeno(T-S) fuzzy model. This representation is used to account for the nonlinearities of lateral cornering forces. The proposed T-S observer is designed with unmeasurable premise variables to cater for non-availability of the slip angles measurement. The proposed approach is evaluated using Car Sim simulator under different driving scenarios. Simulation results show good efficiency of the proposed T-S observer and the rollover detection method.