我国煤矿锚杆强度偏低,对冲击吸收功没有指标要求。通过对煤矿井下锚杆破断情况调查及分析,发现锚杆破断强度低、夹杂物含量高、冲击韧性不足、抗冲击能力不够是造成杆体脆断的重要原因,冲击韧性值低是发生脆断的材质内在因素。介绍了...我国煤矿锚杆强度偏低,对冲击吸收功没有指标要求。通过对煤矿井下锚杆破断情况调查及分析,发现锚杆破断强度低、夹杂物含量高、冲击韧性不足、抗冲击能力不够是造成杆体脆断的重要原因,冲击韧性值低是发生脆断的材质内在因素。介绍了超高强热处理锚杆的主要工艺,对超高强热处理锚杆材料进行了拉伸、拉扭弯及力学性能实验室试验,数据显示这种材料在受拉、扭、弯的情况下可以承受较高的载荷,特别是冲击吸收功指标,是热轧强力锚杆的数倍。在潞安集团漳村煤矿动压巷道进行了井下现场试验,对超高强热处理锚杆受力情况进行了监测,锚杆施加预紧扭矩后初始预紧力为52~98 k N,受力稳定后最大受力为223 k N,小于其破断极限,矿压监测数据表明,支护系统有效地控制了围岩的变形,支护效果良好。展开更多
文摘我国煤矿锚杆强度偏低,对冲击吸收功没有指标要求。通过对煤矿井下锚杆破断情况调查及分析,发现锚杆破断强度低、夹杂物含量高、冲击韧性不足、抗冲击能力不够是造成杆体脆断的重要原因,冲击韧性值低是发生脆断的材质内在因素。介绍了超高强热处理锚杆的主要工艺,对超高强热处理锚杆材料进行了拉伸、拉扭弯及力学性能实验室试验,数据显示这种材料在受拉、扭、弯的情况下可以承受较高的载荷,特别是冲击吸收功指标,是热轧强力锚杆的数倍。在潞安集团漳村煤矿动压巷道进行了井下现场试验,对超高强热处理锚杆受力情况进行了监测,锚杆施加预紧扭矩后初始预紧力为52~98 k N,受力稳定后最大受力为223 k N,小于其破断极限,矿压监测数据表明,支护系统有效地控制了围岩的变形,支护效果良好。