With recent progress in material science, resistive random access memory (RRAM) devices have attracted interest for nonvolatile, low-power, nondestructive readout, and high-density memories. Relevant performance param...With recent progress in material science, resistive random access memory (RRAM) devices have attracted interest for nonvolatile, low-power, nondestructive readout, and high-density memories. Relevant performance parameters of RRAM devices include operating voltage, operation speed, resistance ratio, endurance, retention time, device yield, and multilevel storage. Numerous resistive-switching mechanisms, such as conductive filament, space-charge-limited conduction, trap charging and discharging, Schottky Emission, and Pool-Frenkel emission, have been proposed to explain the resistive switching of RRAM devices. In addition to a discussion of these mechanisms, the effects of electrode materials, doped oxide materials, and different configuration devices on the resistive-switching characteristics in nonvolatile memory applications, are reviewed. Finally, suggestions for future research, as well as the challenges awaiting RRAM devices, are given.展开更多
Three-dimensional(3D) crossbar array architecture is one of the leading candidates for future ultra-high density nonvolatile memory applications. To realize the technological potential, understanding the reliability...Three-dimensional(3D) crossbar array architecture is one of the leading candidates for future ultra-high density nonvolatile memory applications. To realize the technological potential, understanding the reliability mechanisms of the3 D RRAM array has become a field of intense research. In this work, the endurance performance of the 3D 1D1 R crossbar array under the thermal effect is investigated in terms of numerical simulation. It is revealed that the endurance performance of the 3D 1D1 R array would be seriously deteriorated under thermal effects as the feature size scales down to a relatively small value. A possible method to alleviate the thermal effects is provided and verified by numerical simulation.展开更多
Resistive switching memories based on ion transport and related electrochemical reactions have been extensively studied for years.To utilize the resistive switching memories for high-performance information storage ap...Resistive switching memories based on ion transport and related electrochemical reactions have been extensively studied for years.To utilize the resistive switching memories for high-performance information storage applications,a thorough understanding of the key information of ion transport process,including the mobile ion species,the ion transport paths,as well as the electrochemical reaction behaviors of these ions should be provided for material and device optimization.Moreover,ion transport is usually accompanied by processes of microstructure modification,phase transition,and energy band structure variation that lead to further modulation of other physical properties,e.g.,magnetism,optical emission/absorbance,etc.,in the resistive switching materials.Therefore,novel resistive switching memories that are controlled through additional means of magnetic or optical stimulus,or demonstrate extra functionalities beyond information storage,can be made possible via well-defined ion transportation in various switching materials and devices.In this contribution,the mechanism of ion transport and related resistive switching phenomena in thin film sandwich structures is discussed first,followed by a glanceat the recent progress in the development of high-performance and multifunctional resistive switching memories.A brief perspective of the ion transport-based resistive switching memories is addressed at the end of this review.展开更多
文摘With recent progress in material science, resistive random access memory (RRAM) devices have attracted interest for nonvolatile, low-power, nondestructive readout, and high-density memories. Relevant performance parameters of RRAM devices include operating voltage, operation speed, resistance ratio, endurance, retention time, device yield, and multilevel storage. Numerous resistive-switching mechanisms, such as conductive filament, space-charge-limited conduction, trap charging and discharging, Schottky Emission, and Pool-Frenkel emission, have been proposed to explain the resistive switching of RRAM devices. In addition to a discussion of these mechanisms, the effects of electrode materials, doped oxide materials, and different configuration devices on the resistive-switching characteristics in nonvolatile memory applications, are reviewed. Finally, suggestions for future research, as well as the challenges awaiting RRAM devices, are given.
基金Project supported by the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics of Chinese Academy of Sciences,the National High Technology Research and Development Program of China(Grant No.2014AA032901)the National Natural Science Foundation of China(Grant Nos.61574166,61334007,61306117,61322408,61221004,and 61274091)+1 种基金Beijing Training Project for the Leading Talents in S&T,China(Grant No.Z151100000315008)the CAEP Microsystem and THz Science and Technology Foundation,China(Grant No.CAEPMT201504)
文摘Three-dimensional(3D) crossbar array architecture is one of the leading candidates for future ultra-high density nonvolatile memory applications. To realize the technological potential, understanding the reliability mechanisms of the3 D RRAM array has become a field of intense research. In this work, the endurance performance of the 3D 1D1 R crossbar array under the thermal effect is investigated in terms of numerical simulation. It is revealed that the endurance performance of the 3D 1D1 R array would be seriously deteriorated under thermal effects as the feature size scales down to a relatively small value. A possible method to alleviate the thermal effects is provided and verified by numerical simulation.
基金supported by the National Basic Research Program of China(2009CB933004,2012CB933004)the National Natural Science Foundation of China(51172250,51303194,61328402,61306152)+1 种基金Zhejiang and Ningbo Natural Science Foundations(2013A610031)Science and Technology Innovative Research Team of Ningbo Municipality(2009B21005,2011B82004)
文摘Resistive switching memories based on ion transport and related electrochemical reactions have been extensively studied for years.To utilize the resistive switching memories for high-performance information storage applications,a thorough understanding of the key information of ion transport process,including the mobile ion species,the ion transport paths,as well as the electrochemical reaction behaviors of these ions should be provided for material and device optimization.Moreover,ion transport is usually accompanied by processes of microstructure modification,phase transition,and energy band structure variation that lead to further modulation of other physical properties,e.g.,magnetism,optical emission/absorbance,etc.,in the resistive switching materials.Therefore,novel resistive switching memories that are controlled through additional means of magnetic or optical stimulus,or demonstrate extra functionalities beyond information storage,can be made possible via well-defined ion transportation in various switching materials and devices.In this contribution,the mechanism of ion transport and related resistive switching phenomena in thin film sandwich structures is discussed first,followed by a glanceat the recent progress in the development of high-performance and multifunctional resistive switching memories.A brief perspective of the ion transport-based resistive switching memories is addressed at the end of this review.