We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory,...We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory, is called depth imaging and is investigated in this paper. The results show that limited-view scanning causes the reconstructed intensity of deep absorbers to be weaker than that of shallow ones and that deep absorbers will be invisible if the scanning range is too small. The concept of effective scanning angle is proposed to analyse that phenomenon. We find that an effective scanning angle can well predict the relationship between scanning angle and the intensity ratio of absorbers. In addition, limited-view scanning is employed to improve image quality.展开更多
针对摄像机内部参数的不确定性和投影平面选择难的问题,提出一种新的投影深度算法用于视角不变的动作识别,该算法采用对称镜面平面提取(plane extraction from mirror symmetry,PEMS)策略,有效解决了投影平面选择难的问题。首先通过摄...针对摄像机内部参数的不确定性和投影平面选择难的问题,提出一种新的投影深度算法用于视角不变的动作识别,该算法采用对称镜面平面提取(plane extraction from mirror symmetry,PEMS)策略,有效解决了投影平面选择难的问题。首先通过摄像机组观察获得3D动作姿势,然后运用PEMS策略从场景中提取平面,相对于提取平面估计身体点的投影深度,最后使用这个信息进行动作识别。该算法的核心是投影平面的提取和投影深度组成向量的求解。利用该算法在CMU Mo Cap数据集、TUM数据集和多视图IXMAS数据集上进行测试,精度可分别高达94%、91%和90%,且在较少动作实例情况下,仍然能够准确定义新动作。比较表明,该算法的人体动作识别性能明显优于其他几种较新的算法。展开更多
Retinal projection displays (RPDs) are an important development direction for head-mounted dis- plays (HMDs). This paper reviews the literature on optical engineering aspects based on the data on advanced technolo...Retinal projection displays (RPDs) are an important development direction for head-mounted dis- plays (HMDs). This paper reviews the literature on optical engineering aspects based on the data on advanced technology in RPD design and development. The review includes the principles and applications of four theories, e. g., the Maxwellian view and its modified modality and the monocular and binocular depth cues of stereoscopic objects in the physiology of the human visual system. To support the Maxwellian view and achieve retinal projec- tion systems with depth cues, results of previous design works were summarized using different methods and their advantages and disadvantages are analyzed. With an extremely long focal depth, a prototype of a full-color stereoscopic see-through RPD system was discussed. Finally, a brief outlook of the future development trends and applications of the RPDs was presented展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.10874088,10904069,and 11028408)the Natural Science Foundation of Jiangsu Province,China(Grant No.SBK201021985)
文摘We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory, is called depth imaging and is investigated in this paper. The results show that limited-view scanning causes the reconstructed intensity of deep absorbers to be weaker than that of shallow ones and that deep absorbers will be invisible if the scanning range is too small. The concept of effective scanning angle is proposed to analyse that phenomenon. We find that an effective scanning angle can well predict the relationship between scanning angle and the intensity ratio of absorbers. In addition, limited-view scanning is employed to improve image quality.
文摘针对摄像机内部参数的不确定性和投影平面选择难的问题,提出一种新的投影深度算法用于视角不变的动作识别,该算法采用对称镜面平面提取(plane extraction from mirror symmetry,PEMS)策略,有效解决了投影平面选择难的问题。首先通过摄像机组观察获得3D动作姿势,然后运用PEMS策略从场景中提取平面,相对于提取平面估计身体点的投影深度,最后使用这个信息进行动作识别。该算法的核心是投影平面的提取和投影深度组成向量的求解。利用该算法在CMU Mo Cap数据集、TUM数据集和多视图IXMAS数据集上进行测试,精度可分别高达94%、91%和90%,且在较少动作实例情况下,仍然能够准确定义新动作。比较表明,该算法的人体动作识别性能明显优于其他几种较新的算法。
文摘Retinal projection displays (RPDs) are an important development direction for head-mounted dis- plays (HMDs). This paper reviews the literature on optical engineering aspects based on the data on advanced technology in RPD design and development. The review includes the principles and applications of four theories, e. g., the Maxwellian view and its modified modality and the monocular and binocular depth cues of stereoscopic objects in the physiology of the human visual system. To support the Maxwellian view and achieve retinal projec- tion systems with depth cues, results of previous design works were summarized using different methods and their advantages and disadvantages are analyzed. With an extremely long focal depth, a prototype of a full-color stereoscopic see-through RPD system was discussed. Finally, a brief outlook of the future development trends and applications of the RPDs was presented