中分辨率成像光谱仪(M OD IS)已在全球资源环境监测中发挥了重要作用,但是它的低分辨率成为提高分类精度的阻碍。利用M OD IS的高时间分辨率弥补其低空间分辨率的不足,设计分类器改善分类精度。利用2003年23个时相的M OD IS_EV I图像,...中分辨率成像光谱仪(M OD IS)已在全球资源环境监测中发挥了重要作用,但是它的低分辨率成为提高分类精度的阻碍。利用M OD IS的高时间分辨率弥补其低空间分辨率的不足,设计分类器改善分类精度。利用2003年23个时相的M OD IS_EV I图像,构建华北平原植被指数图像时间立方体。在谐波分析去噪标准化基础上,从EV I时间谱上提取5个表征物候差异的特征向量,结合表征地气交互作用差异的地表温度(LST)信息及表征地表固有的空间分异特征的坡度信息,建立分类二叉树进行土地覆盖分类。结果表明,与2000年TM分类结果的总体一致性为75.5%,K appa系数为0.68。而NA SA U SG S基于M OD IS分类精度为66.0051%,K appa系数为0.3209。进一步与2003年耕地面积的官方统计资料的比较表明,该文的估算误差为34.0507 khm2,而NA SA U SG S的估算误差高达66.1205 khm2。研究表明利用高时间分辨率的M OD IS植被指数时间序列获得较高精度的土地覆盖分类结果是可能的。展开更多
现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该...现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该方法在嵌入层融合字粒度、词粒度表示向量以扩充特征内容;其次,在改进双向门控循环单元网络基础上,结合降噪自编码器和注意力机制设计一种特征提取混合模型Bi-GRU-DAE-Attention,实现特征降噪和语义增强;最后,将鲁棒性强的特征向量输入到分类器中实现用户画像生成。实验表明,该用户画像生成方法在医疗和互联网两个画像数据集上的分类准确率高于其他基线方法,并通过消融实验验证了各个模块的有效性。展开更多
用户成长值反映用户粘性,预测用户成长值有助于实现精准营销。聚焦用户成长性画像研究,针对用户原始数据记录复杂多样、难以提取有效特征的问题,通过散点图分析挖掘影响用户成长值的因素,提取行为特征和相对稳定的时间特征,并对比基于...用户成长值反映用户粘性,预测用户成长值有助于实现精准营销。聚焦用户成长性画像研究,针对用户原始数据记录复杂多样、难以提取有效特征的问题,通过散点图分析挖掘影响用户成长值的因素,提取行为特征和相对稳定的时间特征,并对比基于树的特征筛选算法和L1范数进行特征筛选。针对已标注成长值的用户数据不足问题,改进COREG算法,通过半监督学习模型丰富训练数据,提高模型的预测准确度,同时降低原算法的时间复杂度,最后采用模型融合整合不同模型的优势。在CSDN博客平台提供的SMP CUP 2017数据集上进行实验,结果表明,建立的模型有效地提高了泛化能力和预测准确度。展开更多
文摘中分辨率成像光谱仪(M OD IS)已在全球资源环境监测中发挥了重要作用,但是它的低分辨率成为提高分类精度的阻碍。利用M OD IS的高时间分辨率弥补其低空间分辨率的不足,设计分类器改善分类精度。利用2003年23个时相的M OD IS_EV I图像,构建华北平原植被指数图像时间立方体。在谐波分析去噪标准化基础上,从EV I时间谱上提取5个表征物候差异的特征向量,结合表征地气交互作用差异的地表温度(LST)信息及表征地表固有的空间分异特征的坡度信息,建立分类二叉树进行土地覆盖分类。结果表明,与2000年TM分类结果的总体一致性为75.5%,K appa系数为0.68。而NA SA U SG S基于M OD IS分类精度为66.0051%,K appa系数为0.3209。进一步与2003年耕地面积的官方统计资料的比较表明,该文的估算误差为34.0507 khm2,而NA SA U SG S的估算误差高达66.1205 khm2。研究表明利用高时间分辨率的M OD IS植被指数时间序列获得较高精度的土地覆盖分类结果是可能的。
文摘现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该方法在嵌入层融合字粒度、词粒度表示向量以扩充特征内容;其次,在改进双向门控循环单元网络基础上,结合降噪自编码器和注意力机制设计一种特征提取混合模型Bi-GRU-DAE-Attention,实现特征降噪和语义增强;最后,将鲁棒性强的特征向量输入到分类器中实现用户画像生成。实验表明,该用户画像生成方法在医疗和互联网两个画像数据集上的分类准确率高于其他基线方法,并通过消融实验验证了各个模块的有效性。
文摘用户成长值反映用户粘性,预测用户成长值有助于实现精准营销。聚焦用户成长性画像研究,针对用户原始数据记录复杂多样、难以提取有效特征的问题,通过散点图分析挖掘影响用户成长值的因素,提取行为特征和相对稳定的时间特征,并对比基于树的特征筛选算法和L1范数进行特征筛选。针对已标注成长值的用户数据不足问题,改进COREG算法,通过半监督学习模型丰富训练数据,提高模型的预测准确度,同时降低原算法的时间复杂度,最后采用模型融合整合不同模型的优势。在CSDN博客平台提供的SMP CUP 2017数据集上进行实验,结果表明,建立的模型有效地提高了泛化能力和预测准确度。