The decentralized fuzzy inference method(DFIM)is employed as an optimization technique to reconstruct time-and space-dependent heat flux of two-dimensional(2D)participating medium.The forward coupled radiative and con...The decentralized fuzzy inference method(DFIM)is employed as an optimization technique to reconstruct time-and space-dependent heat flux of two-dimensional(2D)participating medium.The forward coupled radiative and conductive heat transfer problem is solved by a combination of finite volume method and discrete ordinate method.The reconstruction task is formulated as an inverse problem,and the DFIM is used to reconstruct the unknown heat flux.No prior information on the heat flux distribution is required for the inverse analysis.All retrieval results illustrate that the time-and spacedependent heat flux of participating medium can be exactly recovered by the DFIM.The present method is proved to be more efficient and accurate than other optimization techniques.The effects of heat flux form,initial guess,medium property,and measurement error on reconstruction results are investigated.Simulated results indicate that the DFIM is robust to reconstruct different kinds of heat fluxes even with noisy data.展开更多
基金Project supported by the Natural Science Foundation of Chongqing(CSTC,Grant No.2019JCYJ-MSXMX0441).
文摘The decentralized fuzzy inference method(DFIM)is employed as an optimization technique to reconstruct time-and space-dependent heat flux of two-dimensional(2D)participating medium.The forward coupled radiative and conductive heat transfer problem is solved by a combination of finite volume method and discrete ordinate method.The reconstruction task is formulated as an inverse problem,and the DFIM is used to reconstruct the unknown heat flux.No prior information on the heat flux distribution is required for the inverse analysis.All retrieval results illustrate that the time-and spacedependent heat flux of participating medium can be exactly recovered by the DFIM.The present method is proved to be more efficient and accurate than other optimization techniques.The effects of heat flux form,initial guess,medium property,and measurement error on reconstruction results are investigated.Simulated results indicate that the DFIM is robust to reconstruct different kinds of heat fluxes even with noisy data.