BACKGROUND: Vagal nerve fibers have many projections to the central nervous system. The anti-epileptic effects of vagus nerve stimulation (VNS) are associated with the thalamus, insular cortex, and other brain regi...BACKGROUND: Vagal nerve fibers have many projections to the central nervous system. The anti-epileptic effects of vagus nerve stimulation (VNS) are associated with the thalamus, insular cortex, and other brain regions. OBJECTIVE: To validate the inhibitory effects of vagus nerve stimulation on firing activities of parafascicular nucleus (Pf) neurons in rats. DESIGN, TIME, AND SETTING: The experiment was performed in the Electrophysiological Laboratory of Department of Neurobiology, Liaoning Medical University between September 2006 and September 2007 with multiple-factor self-controlled design. MATERIALS: Twenty-two healthy adult male Sprague Dawley rats were obtained for this experiment. Main instruments: A320R constant electrical stimulation was made by United States World Precision Instruments, Spike2 Biological Signal Processing Systems was provided by British CED Company. METHODS: Under general anesthesia, the left cervical vagus nerve of rats was separated by approximately 1.0 cm. A stimulation electrode was deployed on the vagus nerve, with various settings for VNS parameters. MAIN OUTCOME MEASURES: ① Firing rates of Pf before and after various VNS parameters were measured according to effect (R) ≥ 20%: excited effect, R ≤ -20%: inhibited effect, -20% 〈 R 〈 20%: no effect. ② Firing rates of excited Pf neurons after various VNS parameters were measured. RESULTS: ① One rat died prior to recording, another was recorded in the wrong brain location, but the remaining 20 rats were included in the final analysis. ② A total of 221 Pf neurons in healthy rats were recorded. The spontaneous firing rats were (6.70 ± 0.56) Hz and varied between 0.34-52.5 Hz. The spontaneous firing rates were significantly increased in 146 neurons (66.1%), increasing from (5.36 ± 0.59) Hz to (8.22 ± 0.81) Hz (P 〈 0.01). A total of 40 (18.1%) neurons did not respond, and 35 (15.8%) neurons were inhibited. ③ The excitation rates of Pf neurons did not incr展开更多
基金This work was supported by the National Natural Science Fundation for Distinguished Young Scholars in China (No. 30425024)the National Basic Research Development Program of China (973 Program) (No. 2007CB507404)
文摘BACKGROUND: Vagal nerve fibers have many projections to the central nervous system. The anti-epileptic effects of vagus nerve stimulation (VNS) are associated with the thalamus, insular cortex, and other brain regions. OBJECTIVE: To validate the inhibitory effects of vagus nerve stimulation on firing activities of parafascicular nucleus (Pf) neurons in rats. DESIGN, TIME, AND SETTING: The experiment was performed in the Electrophysiological Laboratory of Department of Neurobiology, Liaoning Medical University between September 2006 and September 2007 with multiple-factor self-controlled design. MATERIALS: Twenty-two healthy adult male Sprague Dawley rats were obtained for this experiment. Main instruments: A320R constant electrical stimulation was made by United States World Precision Instruments, Spike2 Biological Signal Processing Systems was provided by British CED Company. METHODS: Under general anesthesia, the left cervical vagus nerve of rats was separated by approximately 1.0 cm. A stimulation electrode was deployed on the vagus nerve, with various settings for VNS parameters. MAIN OUTCOME MEASURES: ① Firing rates of Pf before and after various VNS parameters were measured according to effect (R) ≥ 20%: excited effect, R ≤ -20%: inhibited effect, -20% 〈 R 〈 20%: no effect. ② Firing rates of excited Pf neurons after various VNS parameters were measured. RESULTS: ① One rat died prior to recording, another was recorded in the wrong brain location, but the remaining 20 rats were included in the final analysis. ② A total of 221 Pf neurons in healthy rats were recorded. The spontaneous firing rats were (6.70 ± 0.56) Hz and varied between 0.34-52.5 Hz. The spontaneous firing rates were significantly increased in 146 neurons (66.1%), increasing from (5.36 ± 0.59) Hz to (8.22 ± 0.81) Hz (P 〈 0.01). A total of 40 (18.1%) neurons did not respond, and 35 (15.8%) neurons were inhibited. ③ The excitation rates of Pf neurons did not incr