In this paper, a cost-benefit analysis based optimal planning model of battery energy storage system(BESS) in active distribution system(ADS) is established considering a new BESS operation strategy. Reliability impro...In this paper, a cost-benefit analysis based optimal planning model of battery energy storage system(BESS) in active distribution system(ADS) is established considering a new BESS operation strategy. Reliability improvement benefit of BESS is considered and a numerical calculation method based on expectation is proposed for simple and convenient calculation of system reliability improvement with BESS in planning phase. Decision variables include both configuration variables and operation strategy control variables. In order to prevent the interaction between two types of variables and enhance global search ability, intelligent single particle optimizer(ISPO) is adopted to optimize this model. Case studies on a modified IEEE benchmark system verified the performance of the proposed operation strategy and optimal planning model of BESS.展开更多
As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been ...As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and ef展开更多
Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area wit...Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area within artificial intelligence(AI)that focuses on obtaining valuable information out of data,explaining why ML has often been related to stats and data science.An advanced meta-heuristic optimization algorithm is proposed in this work for the optimization problem of antenna architecture design.The algorithm is designed,depending on the hybrid between the Sine Cosine Algorithm(SCA)and the Grey Wolf Optimizer(GWO),to train neural networkbased Multilayer Perceptron(MLP).The proposed optimization algorithm is a practical,versatile,and trustworthy platform to recognize the design parameters in an optimal way for an endorsement double T-shaped monopole antenna.The proposed algorithm likewise shows a comparative and statistical analysis by different curves in addition to the ANOVA and T-Test.It offers the superiority and validation stability evaluation of the predicted results to verify the procedures’accuracy.展开更多
The distributed flexible job shop scheduling problem(DFJSP),which is an extension of the flexible job shop scheduling problem,is a famous NP-complete combinatorial optimization problem.This problem is widespread in th...The distributed flexible job shop scheduling problem(DFJSP),which is an extension of the flexible job shop scheduling problem,is a famous NP-complete combinatorial optimization problem.This problem is widespread in the manufacturing industries and comprises the following three subproblems:the assignment of jobs to factories,the scheduling of operations to machines,and the sequence of operations on machines.However,studies on DFJSP are seldom because of its difficulty.This paper proposes an effective improved gray wolf optimizer(IGWO)to solve the aforementioned problem.In this algorithm,new encoding and decoding schemes are designed to represent the three subproblems and transform the encoding into a feasible schedule,respectively.Four crossover operators are developed to expand the search space.A local search strategy with the concept of a critical factory is also proposed to improve the exploitability of IGWO.Effective schedules can be obtained by changing factory assignments and operation sequences in the critical factory.The proposed IGWO algorithm is evaluated on 69 famous benchmark instances and compared with six state-of-the-art algorithms to demonstrate its efficacy considering solution quality and computational efficiency.Experimental results show that the proposed algorithm has achieved good improvement.Particularly,the proposed IGWO updates the new upper bounds of 13 difficult benchmark instances.展开更多
In the standard grey wolf optimizer(GWO), the search wolf must wait to update its current position until the comparison between the other search wolves and the three leader wolves is completed. During this waiting per...In the standard grey wolf optimizer(GWO), the search wolf must wait to update its current position until the comparison between the other search wolves and the three leader wolves is completed. During this waiting period, the standard GWO is seen as the static GWO. To get rid of this waiting period, two dynamic GWO algorithms are proposed: the first dynamic grey wolf optimizer(DGWO1) and the second dynamic grey wolf optimizer(DGWO2). In the dynamic GWO algorithms, the current search wolf does not need to wait for the comparisons between all other search wolves and the leading wolves, and its position can be updated after completing the comparison between itself or the previous search wolf and the leading wolves. The position of the search wolf is promptly updated in the dynamic GWO algorithms, which increases the iterative convergence rate. Based on the structure of the dynamic GWOs, the performance of the other improved GWOs is examined, verifying that for the same improved algorithm, the one based on dynamic GWO has better performance than that based on static GWO in most instances.展开更多
The Equilibrium Optimizer(EO),Grey Wolf Optimizer(GWO),and Whale Optimizer(WO)algorithms are being recently developed for engineering optimization problems.In this paper,the EO,GWO,and WO algorithms are applied indivi...The Equilibrium Optimizer(EO),Grey Wolf Optimizer(GWO),and Whale Optimizer(WO)algorithms are being recently developed for engineering optimization problems.In this paper,the EO,GWO,and WO algorithms are applied individually for a brushless direct current(BLDC)design optimization problem.The EO algorithm is inspired by the models utilized to find the system’s dynamic state and equilibrium state.The GWO and WO algorithms are inspired by the hunting behavior of the wolf and the whale,respectively.The primary purpose of any optimization technique is to find the optimal configuration by maximizing motor efficiency and/or minimizing the total mass.Therefore,two objective functions are being used to achieve these objectives.The first refers to a design with high power output and efficiency.The second is a constraint imposed by the reality that the motor is built into the wheel of the vehicle and,therefore,a lightweight is needed.The EO,GWO,and WOA algorithms are then utilized to optimize the BLDC motor’s design variables to minimize the motor’s total mass or maximize the motor efficiency by simultaneously satisfying the six inequality constraints.The simulation is carried out using MATLAB simulation software,and the simulation results prove the dominance of the proposed algorithms.This paper also suggests an efficient method from the proposed three methods for the BLDC motor design optimization problem.展开更多
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ...The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.展开更多
Particle swarm optimizer (PSO) is an effective tool for solving many optimization problems. However, it may easily get trapped into local optimum when solving com- plex multimodal nonseparable problems. This paper p...Particle swarm optimizer (PSO) is an effective tool for solving many optimization problems. However, it may easily get trapped into local optimum when solving com- plex multimodal nonseparable problems. This paper presents a novel algorithm called distributed learning particle swarm optimizer (DLPSO) to solve multimodal nonseparable prob- lems. The strategy for DLPSO is to extract good vector infor- mation from local vectors which are distributed around the search space and then to form a new vector which can jump out of local optima and will be optimized further. Experimen- tal studies on a set of test functions show that DLPSO ex- hibits better performance in solving optimization problems with few interactions between variables than several other peer algorithms.展开更多
Due to its simplicity and ease of use, the standard grey wolf optimizer (GWO) is attracting much attention. However, due to its imperfect search structure and possible risk of being trapped in local optima, its appl...Due to its simplicity and ease of use, the standard grey wolf optimizer (GWO) is attracting much attention. However, due to its imperfect search structure and possible risk of being trapped in local optima, its application has been limited. To perfect the performance of the algorithm, an optimized GWO is proposed based on a mutation operator and eliminating-reconstructing mechanism (MR-GWO). By analyzing GWO, it is found that it conducts search with only three leading wolves at the core, and balances the exploration and exploitation abilities by adjusting only the parameter a, which means the wolves lose some diversity to some extent. Therefore, a mutation operator is introduced to facilitate better searching wolves, and an eliminating- reconstructing mechanism is used for the poor search wolves, which not only effectively expands the stochastic search, but also accelerates its convergence, and these two operations complement each other well. To verify its validity, MR-GWO is applied to the global optimization experiment of 13 standard continuous functions and a radial basis function (RBF) network approximation experiment. Through a comparison with other algorithms, it is proven that MR-GWO has a strong advantage.展开更多
文摘In this paper, a cost-benefit analysis based optimal planning model of battery energy storage system(BESS) in active distribution system(ADS) is established considering a new BESS operation strategy. Reliability improvement benefit of BESS is considered and a numerical calculation method based on expectation is proposed for simple and convenient calculation of system reliability improvement with BESS in planning phase. Decision variables include both configuration variables and operation strategy control variables. In order to prevent the interaction between two types of variables and enhance global search ability, intelligent single particle optimizer(ISPO) is adopted to optimize this model. Case studies on a modified IEEE benchmark system verified the performance of the proposed operation strategy and optimal planning model of BESS.
基金supported by the National Natural Science Foundation of China(Grant Nos.41807192,41790441)Innovation Capability Support Program of Shaanxi(Grant No.2020KJXX-005)Natural Science Basic Research Program of Shaanxi(Grant Nos.2019JLM-7,2019JQ-094)。
文摘As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and ef
文摘Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area within artificial intelligence(AI)that focuses on obtaining valuable information out of data,explaining why ML has often been related to stats and data science.An advanced meta-heuristic optimization algorithm is proposed in this work for the optimization problem of antenna architecture design.The algorithm is designed,depending on the hybrid between the Sine Cosine Algorithm(SCA)and the Grey Wolf Optimizer(GWO),to train neural networkbased Multilayer Perceptron(MLP).The proposed optimization algorithm is a practical,versatile,and trustworthy platform to recognize the design parameters in an optimal way for an endorsement double T-shaped monopole antenna.The proposed algorithm likewise shows a comparative and statistical analysis by different curves in addition to the ANOVA and T-Test.It offers the superiority and validation stability evaluation of the predicted results to verify the procedures’accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.51825502 and U21B2029)。
文摘The distributed flexible job shop scheduling problem(DFJSP),which is an extension of the flexible job shop scheduling problem,is a famous NP-complete combinatorial optimization problem.This problem is widespread in the manufacturing industries and comprises the following three subproblems:the assignment of jobs to factories,the scheduling of operations to machines,and the sequence of operations on machines.However,studies on DFJSP are seldom because of its difficulty.This paper proposes an effective improved gray wolf optimizer(IGWO)to solve the aforementioned problem.In this algorithm,new encoding and decoding schemes are designed to represent the three subproblems and transform the encoding into a feasible schedule,respectively.Four crossover operators are developed to expand the search space.A local search strategy with the concept of a critical factory is also proposed to improve the exploitability of IGWO.Effective schedules can be obtained by changing factory assignments and operation sequences in the critical factory.The proposed IGWO algorithm is evaluated on 69 famous benchmark instances and compared with six state-of-the-art algorithms to demonstrate its efficacy considering solution quality and computational efficiency.Experimental results show that the proposed algorithm has achieved good improvement.Particularly,the proposed IGWO updates the new upper bounds of 13 difficult benchmark instances.
基金Project supported by the Scientific Research Plan Projects of Shaanxi Education Department (No. 20JK0972)the Natural Science Basic Research Project of Shaanxi Province (No. 2021JM-517)the Educational and Teaching Reform Research Project of Xianyang Normal University (No. 2017Y004)。
文摘In the standard grey wolf optimizer(GWO), the search wolf must wait to update its current position until the comparison between the other search wolves and the three leader wolves is completed. During this waiting period, the standard GWO is seen as the static GWO. To get rid of this waiting period, two dynamic GWO algorithms are proposed: the first dynamic grey wolf optimizer(DGWO1) and the second dynamic grey wolf optimizer(DGWO2). In the dynamic GWO algorithms, the current search wolf does not need to wait for the comparisons between all other search wolves and the leading wolves, and its position can be updated after completing the comparison between itself or the previous search wolf and the leading wolves. The position of the search wolf is promptly updated in the dynamic GWO algorithms, which increases the iterative convergence rate. Based on the structure of the dynamic GWOs, the performance of the other improved GWOs is examined, verifying that for the same improved algorithm, the one based on dynamic GWO has better performance than that based on static GWO in most instances.
文摘The Equilibrium Optimizer(EO),Grey Wolf Optimizer(GWO),and Whale Optimizer(WO)algorithms are being recently developed for engineering optimization problems.In this paper,the EO,GWO,and WO algorithms are applied individually for a brushless direct current(BLDC)design optimization problem.The EO algorithm is inspired by the models utilized to find the system’s dynamic state and equilibrium state.The GWO and WO algorithms are inspired by the hunting behavior of the wolf and the whale,respectively.The primary purpose of any optimization technique is to find the optimal configuration by maximizing motor efficiency and/or minimizing the total mass.Therefore,two objective functions are being used to achieve these objectives.The first refers to a design with high power output and efficiency.The second is a constraint imposed by the reality that the motor is built into the wheel of the vehicle and,therefore,a lightweight is needed.The EO,GWO,and WOA algorithms are then utilized to optimize the BLDC motor’s design variables to minimize the motor’s total mass or maximize the motor efficiency by simultaneously satisfying the six inequality constraints.The simulation is carried out using MATLAB simulation software,and the simulation results prove the dominance of the proposed algorithms.This paper also suggests an efficient method from the proposed three methods for the BLDC motor design optimization problem.
文摘The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.
文摘Particle swarm optimizer (PSO) is an effective tool for solving many optimization problems. However, it may easily get trapped into local optimum when solving com- plex multimodal nonseparable problems. This paper presents a novel algorithm called distributed learning particle swarm optimizer (DLPSO) to solve multimodal nonseparable prob- lems. The strategy for DLPSO is to extract good vector infor- mation from local vectors which are distributed around the search space and then to form a new vector which can jump out of local optima and will be optimized further. Experimen- tal studies on a set of test functions show that DLPSO ex- hibits better performance in solving optimization problems with few interactions between variables than several other peer algorithms.
基金supported by the National High-Tech R&D Program(863)of China(No.2015AA7041003)the Scientific Research Plan Projects of Shanxi Education Department(No.17JK0825)the Scientific Research Plan Projects of Xianyang Normal University(No.15XSYK036)
文摘Due to its simplicity and ease of use, the standard grey wolf optimizer (GWO) is attracting much attention. However, due to its imperfect search structure and possible risk of being trapped in local optima, its application has been limited. To perfect the performance of the algorithm, an optimized GWO is proposed based on a mutation operator and eliminating-reconstructing mechanism (MR-GWO). By analyzing GWO, it is found that it conducts search with only three leading wolves at the core, and balances the exploration and exploitation abilities by adjusting only the parameter a, which means the wolves lose some diversity to some extent. Therefore, a mutation operator is introduced to facilitate better searching wolves, and an eliminating- reconstructing mechanism is used for the poor search wolves, which not only effectively expands the stochastic search, but also accelerates its convergence, and these two operations complement each other well. To verify its validity, MR-GWO is applied to the global optimization experiment of 13 standard continuous functions and a radial basis function (RBF) network approximation experiment. Through a comparison with other algorithms, it is proven that MR-GWO has a strong advantage.