Strong low-frequency energy beneath a hydrocarbon reservoir is called a seismic low-frequency shadow and can be used as a hydrocarbon indicator (Tarter et al., 1979) bu the physical mechanism of the observed low-fre...Strong low-frequency energy beneath a hydrocarbon reservoir is called a seismic low-frequency shadow and can be used as a hydrocarbon indicator (Tarter et al., 1979) bu the physical mechanism of the observed low-frequency shadow is still unclear. To stud) the mechanism, we performed seismic numerical simulation of geological models with a hydrocarbon-bearing zone using the 2-D diffusive-viscous wave equation which car effectively model the characteristics of velocity dispersion and transform the seismic dat~ centered in a target layer slice within a time window to the time-frequency domain by usinl time-frequency signal analysis and sort the frequency gathers to common frequency cubes. Then, we observe the characteristics of the seismic low-frequency shadow in the common frequency cubes. The numerical simulations reveal that the main mechanism of seismic lowfrequency shadows is attributed to high attenuation of the medium to high seismic frequency components caused by absorption in the hydrocarbon-filled reservoir. Results from a practical example of seismic low-frequency shadows show that it is possible to identify the reservoir by the low-frequency shadow with high S/N seismic data.展开更多
基金supported by the National Hi-tech Research and Development Program of China (863 Program) (Grant No. 2006AA0AA 02 - 2).
文摘Strong low-frequency energy beneath a hydrocarbon reservoir is called a seismic low-frequency shadow and can be used as a hydrocarbon indicator (Tarter et al., 1979) bu the physical mechanism of the observed low-frequency shadow is still unclear. To stud) the mechanism, we performed seismic numerical simulation of geological models with a hydrocarbon-bearing zone using the 2-D diffusive-viscous wave equation which car effectively model the characteristics of velocity dispersion and transform the seismic dat~ centered in a target layer slice within a time window to the time-frequency domain by usinl time-frequency signal analysis and sort the frequency gathers to common frequency cubes. Then, we observe the characteristics of the seismic low-frequency shadow in the common frequency cubes. The numerical simulations reveal that the main mechanism of seismic lowfrequency shadows is attributed to high attenuation of the medium to high seismic frequency components caused by absorption in the hydrocarbon-filled reservoir. Results from a practical example of seismic low-frequency shadows show that it is possible to identify the reservoir by the low-frequency shadow with high S/N seismic data.