为寻求岩石临界破坏判据和前兆特征,在粗砂岩单轴压缩声发射(AE)试验的基础上,研究了岩石破坏过程中AE信号频段占比随应力变化特征,重点分析高、低两个特征频段占比随应力变化规律,同时对两个特征频段中不同应力水平下AE幅值关联维数进...为寻求岩石临界破坏判据和前兆特征,在粗砂岩单轴压缩声发射(AE)试验的基础上,研究了岩石破坏过程中AE信号频段占比随应力变化特征,重点分析高、低两个特征频段占比随应力变化规律,同时对两个特征频段中不同应力水平下AE幅值关联维数进行计算与分析,并建立了基于频段占比与应力间关系的多频段AE信号主频识别判据模型。研究表明:AE信号频段占比的分布特征能较好地诠释岩石破坏所经历的主要过程;岩石破坏过程中,较低频段AE信号(31.25~46.875 k Hz)占比先减小后增大,较高频段AE信号(140.625~156.25 k Hz)占比先增大后减小。在临界破坏状态下,高、低两个特征频段占比分别出现最大值和最小值,且二者中AE幅值关联维数都下降到最低。通过对特征频段占比与应力之间的耦合分析,利用特征频段占比、AE幅值关联维数的变化可更准确地对岩石临界破坏前兆进行判别和预测。展开更多
We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation pri...We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation principle based on inter-leaved dipole and slot modes is studied and analyzed using full-wave simulations followed by a qualitative time domain analysis.Subsequently,a 2×2 dual-band radiating unit is conceived and developed by closely arranging single wideband antennas.In this case,multimode resonances are generated in a lower frequency band by a proper convolving and coupling of the magnetic and electric currents realized in the gaps between the antennas and on the surface of the antennas,respectively.This methodology can be deployed repeatedly to build up a self-scalable topology by reusing the electromagnetically(EM)connected radiating surfaces and gaps be-tween the radiating units.Due to the efficient reuse of the electromagnetic region for the development of multiband radiation,a high aperture-reuse efficiency is achieved.Finally,as a proof of concept,a 2×4 dual-band array operating in Ku-and Ka-bands is devel-oped and fabricated by a linear arrangement of the two developed radiating units.Our measurement results show that the proposed antenna array provides impedance and gain bandwidths of 30%and 25.4%in the Ku-band and 10.65%and 8.52%in the Ka-band,respectively.展开更多
文摘为寻求岩石临界破坏判据和前兆特征,在粗砂岩单轴压缩声发射(AE)试验的基础上,研究了岩石破坏过程中AE信号频段占比随应力变化特征,重点分析高、低两个特征频段占比随应力变化规律,同时对两个特征频段中不同应力水平下AE幅值关联维数进行计算与分析,并建立了基于频段占比与应力间关系的多频段AE信号主频识别判据模型。研究表明:AE信号频段占比的分布特征能较好地诠释岩石破坏所经历的主要过程;岩石破坏过程中,较低频段AE信号(31.25~46.875 k Hz)占比先减小后增大,较高频段AE信号(140.625~156.25 k Hz)占比先增大后减小。在临界破坏状态下,高、低两个特征频段占比分别出现最大值和最小值,且二者中AE幅值关联维数都下降到最低。通过对特征频段占比与应力之间的耦合分析,利用特征频段占比、AE幅值关联维数的变化可更准确地对岩石临界破坏前兆进行判别和预测。
文摘We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation principle based on inter-leaved dipole and slot modes is studied and analyzed using full-wave simulations followed by a qualitative time domain analysis.Subsequently,a 2×2 dual-band radiating unit is conceived and developed by closely arranging single wideband antennas.In this case,multimode resonances are generated in a lower frequency band by a proper convolving and coupling of the magnetic and electric currents realized in the gaps between the antennas and on the surface of the antennas,respectively.This methodology can be deployed repeatedly to build up a self-scalable topology by reusing the electromagnetically(EM)connected radiating surfaces and gaps be-tween the radiating units.Due to the efficient reuse of the electromagnetic region for the development of multiband radiation,a high aperture-reuse efficiency is achieved.Finally,as a proof of concept,a 2×4 dual-band array operating in Ku-and Ka-bands is devel-oped and fabricated by a linear arrangement of the two developed radiating units.Our measurement results show that the proposed antenna array provides impedance and gain bandwidths of 30%and 25.4%in the Ku-band and 10.65%and 8.52%in the Ka-band,respectively.