A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow...A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.展开更多
In situ observations of the flow morphology during mold filling under counter gravity are conducted on a perspex water model by means of flow visualization, high speed photography and pattern processing. The experimen...In situ observations of the flow morphology during mold filling under counter gravity are conducted on a perspex water model by means of flow visualization, high speed photography and pattern processing. The experimental results indicate that influences of the dynamic factors on flow morphology can be expressed quantitatively with the parameterφ(k). The flow field takes on different morphology with change in values of φ(k). For thick and thin walled castings, the main dynamic factors influencing flow morphology are gravity and surface tension respectively. Under general circumstances, F_r and W_e should be equal in their values to guarantee the similarity between the prototype and the model in simulating mold filling under counter gravity by experiment.展开更多
文摘A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.
文摘In situ observations of the flow morphology during mold filling under counter gravity are conducted on a perspex water model by means of flow visualization, high speed photography and pattern processing. The experimental results indicate that influences of the dynamic factors on flow morphology can be expressed quantitatively with the parameterφ(k). The flow field takes on different morphology with change in values of φ(k). For thick and thin walled castings, the main dynamic factors influencing flow morphology are gravity and surface tension respectively. Under general circumstances, F_r and W_e should be equal in their values to guarantee the similarity between the prototype and the model in simulating mold filling under counter gravity by experiment.