Sequential extraction procedure was applied to assess the dynamics of solid-phase transformation of added Cu, Pb, Cd, and Hg in a typical Chinese paddy soil incubated under three moisture regimes (75% field capacity,...Sequential extraction procedure was applied to assess the dynamics of solid-phase transformation of added Cu, Pb, Cd, and Hg in a typical Chinese paddy soil incubated under three moisture regimes (75% field capacity, wetting-drying cycle, and flooding). The heavy metals spiked in the soil were time-dependently transferred from the easily extractable fraction (the exchangeable fraction) into less labile fractions (Fe-Mn oxide- and organic matter-bound fractions), and thus reduced lability of the metals. No significant changes were found for the carbonate-bound and residual fractions of the heavy metals in the soil during the whole incubation. Change rate of the mobility factor (MF), a proportion of weakly bound fractions (exchangeable and carbonate-bound) in the total metal of soil, reflected the transformation rate of metal speciation from the labile fractions toward stable fractions. It was found that soil moisture regime did not change the direction and pathways of transformation of metal speciation, but it significantly affected the transformation rate. In general, the paddy soil under flooding regime had higher metal reactivity compared with 75% field capacity and wetting-drying cycle regimes, resulting in the more complete movement of metals toward stable fractions. This might be related to the increased pH, precipitation of the metals with sulfides and higher concentration of amorphous Fe oxides under submerged condition.展开更多
Moisture regime plays a crucial role in the mineralization of soil organic carbon (SOC). In this paper, the dynamics of SOC mineralization in typical paddy soils of Changshu, Jiangsu Province, China, was investigate...Moisture regime plays a crucial role in the mineralization of soil organic carbon (SOC). In this paper, the dynamics of SOC mineralization in typical paddy soils of Changshu, Jiangsu Province, China, was investigated by incubation test in laboratory. The differences in SOC mineralization under aerobic and submerged conditions of paddy soils were also studied. Results showed that the daily mineralization of SOC under different moisture regimes was significantly different in the whole incubation period, at the beginning of the incubation, it decreased quickly under aerobic condition, but increased rapidly under submerged condition, and both remained constant after 10 d of incubation. The differences in SOC mineralization were found to be mainly at the beginning period of the incubation and decreased along with the incubation time. Thus, the difference was not significantly different at the later incubation period. The respiration intensity, daily and cumulative mineralization of SOC under aerobic condition was 2.26-19.11, 0.96-2.41, and 0.96-2.41 times than those .under submerged condition, respectively. Statistic analyses showed that the higher the contents of microbial biomass carbon and nitrogen, the more significant difference in respiration intensity between aerobic and submerged conditions, but the higher the contents of microbial biomass nitrogen and dissolved organic carbon, the more significant difference in daily mineralization of SOC between the two conditions. The decrease in soil microbial activity under submerged condition was the main reason leading to the decrease in respiration intensity, but the decrease in SOC mineralization was also correlated with the changes in dissolved organic carbon over the whole incubation period.展开更多
Understanding the dynamics of soil carbon is crucial for assessing the soil carbon storage and predicting the potential of mitigating carbon dioxide from the atmosphere to the biomass and soil.The present study evalua...Understanding the dynamics of soil carbon is crucial for assessing the soil carbon storage and predicting the potential of mitigating carbon dioxide from the atmosphere to the biomass and soil.The present study evaluated variations of soil carbon stock in semi-arid forests in India under diff erent moisture regimes.Soil organic carbon(SOC)and soil inorganic carbon(SIC)stocks were determined in diff erent moisture regimes i.e.monsoon,post-monsoon,winter and pre-monsoon seasons at 0–10 and>10–20 cm depths.SOC stock showed signifi cant variations under different moisture regimes.The highest SOC stock was during winter(22.81 Mg C ha−1)and lowest during the monsoon season(2.34 Mg C ha−1)among all the ridge forests under study.SOC and SIC stock under diff erent moisture regimes showed signifi cant negative correlation with soil moisture(p<0.05),as a sudden increase in soil moisture after rainfall results in an increase in carbon loss due to microbial decomposition of accumulated carbon during the dry period.There was an increase in annual SOC stock and a decrease(or no change in some cases),in SIC stock at both the depths during the study period.The SOC and SIC sequestration rates were estimated as any increase/decrease in the respective stock during each successive year.SOC sequestered ranged between 0.046 and 0.741 Mg C ha−1 y−1.Similarly,SIC sequestration ranged between 0.013 and 0.023 Mg C ha−1 y−1 over all ridge forests up to 20 cm depth.The Delhi ridge forests,which accounts to 0.007%of the semi-arid regions of India,contribute 0.25–0.32%of the national potential(semi-arid region)for SOC sequestration up to 20 cm depth.The estimates of the rate of C sequestration in this study provide a realistic image of carbon dynamics under present climatic conditions of semi-arid forests,and could be used in developing a database and formulating new strategies for carbon dioxide mitigation by enhancing soil C sequestration rates.展开更多
基金supported by the National Basic Research Program (973) of China (No. 2005CB121104)the National Natural Science Foundation of China (No.41071145)
文摘Sequential extraction procedure was applied to assess the dynamics of solid-phase transformation of added Cu, Pb, Cd, and Hg in a typical Chinese paddy soil incubated under three moisture regimes (75% field capacity, wetting-drying cycle, and flooding). The heavy metals spiked in the soil were time-dependently transferred from the easily extractable fraction (the exchangeable fraction) into less labile fractions (Fe-Mn oxide- and organic matter-bound fractions), and thus reduced lability of the metals. No significant changes were found for the carbonate-bound and residual fractions of the heavy metals in the soil during the whole incubation. Change rate of the mobility factor (MF), a proportion of weakly bound fractions (exchangeable and carbonate-bound) in the total metal of soil, reflected the transformation rate of metal speciation from the labile fractions toward stable fractions. It was found that soil moisture regime did not change the direction and pathways of transformation of metal speciation, but it significantly affected the transformation rate. In general, the paddy soil under flooding regime had higher metal reactivity compared with 75% field capacity and wetting-drying cycle regimes, resulting in the more complete movement of metals toward stable fractions. This might be related to the increased pH, precipitation of the metals with sulfides and higher concentration of amorphous Fe oxides under submerged condition.
基金supported by the National Natural Science Foundation of China (40471066)the Natural Science Foundation of Jiangsu Province,China (BK2007266)
文摘Moisture regime plays a crucial role in the mineralization of soil organic carbon (SOC). In this paper, the dynamics of SOC mineralization in typical paddy soils of Changshu, Jiangsu Province, China, was investigated by incubation test in laboratory. The differences in SOC mineralization under aerobic and submerged conditions of paddy soils were also studied. Results showed that the daily mineralization of SOC under different moisture regimes was significantly different in the whole incubation period, at the beginning of the incubation, it decreased quickly under aerobic condition, but increased rapidly under submerged condition, and both remained constant after 10 d of incubation. The differences in SOC mineralization were found to be mainly at the beginning period of the incubation and decreased along with the incubation time. Thus, the difference was not significantly different at the later incubation period. The respiration intensity, daily and cumulative mineralization of SOC under aerobic condition was 2.26-19.11, 0.96-2.41, and 0.96-2.41 times than those .under submerged condition, respectively. Statistic analyses showed that the higher the contents of microbial biomass carbon and nitrogen, the more significant difference in respiration intensity between aerobic and submerged conditions, but the higher the contents of microbial biomass nitrogen and dissolved organic carbon, the more significant difference in daily mineralization of SOC between the two conditions. The decrease in soil microbial activity under submerged condition was the main reason leading to the decrease in respiration intensity, but the decrease in SOC mineralization was also correlated with the changes in dissolved organic carbon over the whole incubation period.
基金The research was fully funded by DST-SERB research Project NO.SB/YS/LS-88/2013.Minor Grants received through R&D Grants,University of Delhi is also highly acknowledged.
文摘Understanding the dynamics of soil carbon is crucial for assessing the soil carbon storage and predicting the potential of mitigating carbon dioxide from the atmosphere to the biomass and soil.The present study evaluated variations of soil carbon stock in semi-arid forests in India under diff erent moisture regimes.Soil organic carbon(SOC)and soil inorganic carbon(SIC)stocks were determined in diff erent moisture regimes i.e.monsoon,post-monsoon,winter and pre-monsoon seasons at 0–10 and>10–20 cm depths.SOC stock showed signifi cant variations under different moisture regimes.The highest SOC stock was during winter(22.81 Mg C ha−1)and lowest during the monsoon season(2.34 Mg C ha−1)among all the ridge forests under study.SOC and SIC stock under diff erent moisture regimes showed signifi cant negative correlation with soil moisture(p<0.05),as a sudden increase in soil moisture after rainfall results in an increase in carbon loss due to microbial decomposition of accumulated carbon during the dry period.There was an increase in annual SOC stock and a decrease(or no change in some cases),in SIC stock at both the depths during the study period.The SOC and SIC sequestration rates were estimated as any increase/decrease in the respective stock during each successive year.SOC sequestered ranged between 0.046 and 0.741 Mg C ha−1 y−1.Similarly,SIC sequestration ranged between 0.013 and 0.023 Mg C ha−1 y−1 over all ridge forests up to 20 cm depth.The Delhi ridge forests,which accounts to 0.007%of the semi-arid regions of India,contribute 0.25–0.32%of the national potential(semi-arid region)for SOC sequestration up to 20 cm depth.The estimates of the rate of C sequestration in this study provide a realistic image of carbon dynamics under present climatic conditions of semi-arid forests,and could be used in developing a database and formulating new strategies for carbon dioxide mitigation by enhancing soil C sequestration rates.