The properties of water and their changes under the action of a magnetic field were gathered by the spectrum techniques of infrared, Raman, visible, ultraviolet and X-ray lights, which may give an insight into molecul...The properties of water and their changes under the action of a magnetic field were gathered by the spectrum techniques of infrared, Raman, visible, ultraviolet and X-ray lights, which may give an insight into molecular and atomic structures of water. It was found that some properties of water were changed, and a lot of new and strange phenomena were discovered after magnetization. Magnetized water really has magnetism, which has been verified by a peak shift of X-ray diffraction of magnetized water + Fe3O4 hybrid relative to that of pure water + Fe3O4 hybrid, that is a saturation and memory effect. The properties of infrared and ultraviolet absorptions, Raman scattering and X-ray diffraction of magnetized water were greatly changed relative to those of pure water; their strengths of peaks were all increased, the frequencies of some peaks did also shift, and some new peaks, for example, at 5198, 8050 and 9340 cm?1, occurred at 25°C after water was magnetized. In the meanwhile, the magnetized effects of water are related to the magnetized time, the intensity of an externally applied magnetic field, and the temperature of water, but they are not a linear relationship. The study also showed a lot of new and unusual properties of magnetized water, for example, the six peaks in 3000–3800 cm?1 in infrared absorption, the exponential increase of ultraviolet absorption of wave with the decreasing wavelength of light of 200–300 nm, the frequency-shifts of peaks, a strange irreversible effect in the increasing and decreasing processes, as well as a stronger peak of absorption occurring at 50°C, 70°C and 80°C, the existence of many models of motion from 85°C to 95°C in 8000–10000 cm?1, and so on. These results show that the molecular structure of water is very complicated, which needs further study. Furthermore, the macroscopic feature of mechanics, for instance, surface tension force of magnetized water, was also measured. Experiments discovered that the size in contact angles of magnetized water on the surface展开更多
为降低全尾砂絮凝沉降成本,提高絮凝沉降效果,将磁化水引入某矿全尾砂絮凝沉降试验中,探讨磁化水在全尾砂絮凝沉降过程中的促凝作用;研究不同磁化条件下,全尾砂絮凝沉降速度和底流极限质量分数的变化规律。研究结果表明:在磁化水-全尾...为降低全尾砂絮凝沉降成本,提高絮凝沉降效果,将磁化水引入某矿全尾砂絮凝沉降试验中,探讨磁化水在全尾砂絮凝沉降过程中的促凝作用;研究不同磁化条件下,全尾砂絮凝沉降速度和底流极限质量分数的变化规律。研究结果表明:在磁化水-全尾砂絮凝沉降过程中,絮凝剂单耗饱和点(沉降速度最大时)与普通水的单耗饱和点相比降低1/3,沉降速度提高1.4~2.1倍,底流质量分数最大增幅达3.2%;当磁感应强度B为150~200 m T,磁化时间t为20~25 min,水循环流速v为2.0~2.5 m/s时,沉降效果最理想;在适合的磁化条件下,磁化水在降低絮凝剂单耗、提高絮凝沉降速度和底流质量分数方面具有明显的优越性。展开更多
基金the National Basic Research Program of China (Grant No. 2007CB936103)
文摘The properties of water and their changes under the action of a magnetic field were gathered by the spectrum techniques of infrared, Raman, visible, ultraviolet and X-ray lights, which may give an insight into molecular and atomic structures of water. It was found that some properties of water were changed, and a lot of new and strange phenomena were discovered after magnetization. Magnetized water really has magnetism, which has been verified by a peak shift of X-ray diffraction of magnetized water + Fe3O4 hybrid relative to that of pure water + Fe3O4 hybrid, that is a saturation and memory effect. The properties of infrared and ultraviolet absorptions, Raman scattering and X-ray diffraction of magnetized water were greatly changed relative to those of pure water; their strengths of peaks were all increased, the frequencies of some peaks did also shift, and some new peaks, for example, at 5198, 8050 and 9340 cm?1, occurred at 25°C after water was magnetized. In the meanwhile, the magnetized effects of water are related to the magnetized time, the intensity of an externally applied magnetic field, and the temperature of water, but they are not a linear relationship. The study also showed a lot of new and unusual properties of magnetized water, for example, the six peaks in 3000–3800 cm?1 in infrared absorption, the exponential increase of ultraviolet absorption of wave with the decreasing wavelength of light of 200–300 nm, the frequency-shifts of peaks, a strange irreversible effect in the increasing and decreasing processes, as well as a stronger peak of absorption occurring at 50°C, 70°C and 80°C, the existence of many models of motion from 85°C to 95°C in 8000–10000 cm?1, and so on. These results show that the molecular structure of water is very complicated, which needs further study. Furthermore, the macroscopic feature of mechanics, for instance, surface tension force of magnetized water, was also measured. Experiments discovered that the size in contact angles of magnetized water on the surface
文摘为降低全尾砂絮凝沉降成本,提高絮凝沉降效果,将磁化水引入某矿全尾砂絮凝沉降试验中,探讨磁化水在全尾砂絮凝沉降过程中的促凝作用;研究不同磁化条件下,全尾砂絮凝沉降速度和底流极限质量分数的变化规律。研究结果表明:在磁化水-全尾砂絮凝沉降过程中,絮凝剂单耗饱和点(沉降速度最大时)与普通水的单耗饱和点相比降低1/3,沉降速度提高1.4~2.1倍,底流质量分数最大增幅达3.2%;当磁感应强度B为150~200 m T,磁化时间t为20~25 min,水循环流速v为2.0~2.5 m/s时,沉降效果最理想;在适合的磁化条件下,磁化水在降低絮凝剂单耗、提高絮凝沉降速度和底流质量分数方面具有明显的优越性。