The optical property and spectroscopy of selected kinds of lubricating oil are studied based on the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.3-1.6 THz. The samples are classified by thei...The optical property and spectroscopy of selected kinds of lubricating oil are studied based on the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.3-1.6 THz. The samples are classified by their characteristics via the near-infrared spectrum. The experimental results reveal that lubricating oil is more sensitive in the range of terahertz than in the near-infrared,and the specific kinds of lubricating oil can be identified according to their different spectral features in the terahertz range. The THz-TDS technology applied to lubricating oil analysis has potentially significant impact on the petroleum field.展开更多
基金Supported by the Program for New Century Excellent Talents in University (Grant No. NCET-08-0841)the National Natural Science Foundation of China (Grant Nos. 50672132, 60778034, and 60877038)+3 种基金the Key Project of Chinese Ministry of Education (Grant No. 107020)the Beijng Natural Science Foundation (Grant No. 4082026)the Research Fund for the Doctoral Program of Higher Education (Grant No. 200804250006)the State Key Laboratory of Heavy Oil Processing, China University Of Petroleum (Grant No. 2008-14)
文摘The optical property and spectroscopy of selected kinds of lubricating oil are studied based on the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.3-1.6 THz. The samples are classified by their characteristics via the near-infrared spectrum. The experimental results reveal that lubricating oil is more sensitive in the range of terahertz than in the near-infrared,and the specific kinds of lubricating oil can be identified according to their different spectral features in the terahertz range. The THz-TDS technology applied to lubricating oil analysis has potentially significant impact on the petroleum field.