NMR serves as an important technique for probing rock pore space,such as pore structure characterization,fluid identification,and petrophysical property testing,due to the reusability of cores,convenience in sample pr...NMR serves as an important technique for probing rock pore space,such as pore structure characterization,fluid identification,and petrophysical property testing,due to the reusability of cores,convenience in sample processing,and time efficiency in laboratory tests.In practice,NMR signal collection is normally achieved through polarized nuclei relaxation which releases crucial relaxation messages for result interpretation.The impetus of this work is to help engineers and researchers with petroleum background obtain new insights into NMR principals and extend existing methodologies for characterization of unconventional formations.This article first gives a brief description of the development history of relaxation theories and models for porous media.Then,the widely used NMR techniques for characterizing petrophysical properties and pore structures are presented.Meanwhile,limitations and deficiencies of them are summarized.Finally,future work on improving these insufficiencies and approaches of enhancement applicability for NMR technologies are discussed.展开更多
High-performance low-k and low-loss circuit materials are urgently needed in the field of microelectronics due to the upcoming FifthGeneration Mobile Communications Technology(5 G Technology).Herein,a facile design st...High-performance low-k and low-loss circuit materials are urgently needed in the field of microelectronics due to the upcoming FifthGeneration Mobile Communications Technology(5 G Technology).Herein,a facile design strategy for non-fluorinated intrinsic low-k and low-loss polyimides is reported by fully considering the secondary relaxation behaviors of the polymer chains.A new amorphous non-fluorinated polymer(TmBPPA)with a k value of 2.23 and a loss tangent lower than 3.94×10^-3 at 104 Hz has been designed and synthesized,which to the best of our knowledge is the lowest value amongst the non-fluorinated and non-porous polymers reported in literature.Meanwhile,TmBPPA exhibits excellent overall properties,such as excellent thermostability,good mechanical properties,low moisture absorption,and high bonding strength.As high-performance flexible circuit materials,all these characteristics are highly expected to meet the present and future demands for high density,high speed,and high frequency electronic circuit used in 5 G wireless networks.展开更多
The low-temperature performance of Li-ion batteries(LIBs) has important impacts on their commercial applications. Besides the metallic lithium deposition, which is regarded as one of the main failure mechanisms of the...The low-temperature performance of Li-ion batteries(LIBs) has important impacts on their commercial applications. Besides the metallic lithium deposition, which is regarded as one of the main failure mechanisms of the LIBs at low temperatures, the synergistic effects originating from the cathode, anode, electrolyte, and separators to the batteries are still not clear. Here, the 21700-type cylindrical batteries were evaluated at a wide range of temperatures to investigate the failure mechanism of batteries. Voltage relaxation, and the post-mortem analysis combined with the electrochemical tests, unravel that the capacity degradation of batteries at low temperature is related to the lithium plating at graphite anodes,the formation of unsatisfied solid deposited/decomposed electrolyte mixture phase on the anode, the precipitation of solvent in the electrolytes and the block of separator pores, and the uneven dissolved transition metal-ions from the cathode. We hope this finding may open up a new avenue to alleviate the capacity degradation of advanced LIBs at low temperatures and shed light on the development of outstanding low-temperature LIBs via simultaneous optimization of all the components including electrodes, electrolytes and separators.展开更多
For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extra...For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extraction efficiency are pressure relief and infrared antireflection. We have analyzed the effect of mining conditions and the regularity of mine pressure distribution in front of the working face of a major coal mine of the Jiaozuo Industrial (Group) Co. as our test area, studied the width of the depressurization zone in slice mining and analyzed gas efficiency and fast drainage in the advanced stress relaxation zone. On that basis, we further investigated and practiced the exploitation technology of shallow drilling, fan dril- ling and grid shape drilling at the working face. Practice and our results show that the stress relaxation zone is the ideal region for quick and efficient extraction of gas. By means of an integrated extraction technology, the amount of gas emitted into the zone was greatly reduced, while the risk of dangerous outbursts of coal and gas was lowered markedly. This exploration provides a new way to control for gas in working faces of coal mines with low permeability and risk of gas outbursts of single coal seams in the Jiaozuo mining area.展开更多
The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life...The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.展开更多
基金financially supported by the National Science Foundation for Distinguished Young Scholars(51525404)the National Science and Technology Major Project(No.2016ZX05002002)the National Science and Technology Major Project(2016ZX05048-004-006)。
文摘NMR serves as an important technique for probing rock pore space,such as pore structure characterization,fluid identification,and petrophysical property testing,due to the reusability of cores,convenience in sample processing,and time efficiency in laboratory tests.In practice,NMR signal collection is normally achieved through polarized nuclei relaxation which releases crucial relaxation messages for result interpretation.The impetus of this work is to help engineers and researchers with petroleum background obtain new insights into NMR principals and extend existing methodologies for characterization of unconventional formations.This article first gives a brief description of the development history of relaxation theories and models for porous media.Then,the widely used NMR techniques for characterizing petrophysical properties and pore structures are presented.Meanwhile,limitations and deficiencies of them are summarized.Finally,future work on improving these insufficiencies and approaches of enhancement applicability for NMR technologies are discussed.
基金finincially supported by the National Natural Science Foundation of China (Nos. 51373204 and 51873239)the National 973 Program of China (No. 2014CB643605)+3 种基金the Science and Technology Project of Guangdong Province (Nos. 2015B090915003 and 2015B090913003)the Leading Scientific, Technical and Innovation Talents of Guangdong Special Support Program (No. 2016TX03C295)the China Postdoctoral Science Foundation (No. 2017M612801)the Fundamental Research Funds of Sun Yat-sen University
文摘High-performance low-k and low-loss circuit materials are urgently needed in the field of microelectronics due to the upcoming FifthGeneration Mobile Communications Technology(5 G Technology).Herein,a facile design strategy for non-fluorinated intrinsic low-k and low-loss polyimides is reported by fully considering the secondary relaxation behaviors of the polymer chains.A new amorphous non-fluorinated polymer(TmBPPA)with a k value of 2.23 and a loss tangent lower than 3.94×10^-3 at 104 Hz has been designed and synthesized,which to the best of our knowledge is the lowest value amongst the non-fluorinated and non-porous polymers reported in literature.Meanwhile,TmBPPA exhibits excellent overall properties,such as excellent thermostability,good mechanical properties,low moisture absorption,and high bonding strength.As high-performance flexible circuit materials,all these characteristics are highly expected to meet the present and future demands for high density,high speed,and high frequency electronic circuit used in 5 G wireless networks.
基金supported by the National Natural Science Foundation of China (U1664255, 21875022, 51802020, U1564206)the National Key R&D Program of China (2016YFB0100301)+2 种基金the Science and Technology Innovation Foundation of Beijing Institute of Technology Chongqing Innovation Center (2020CX5100006)the Young Elite Scientists Sponsorship Program by CAST (2018QNRC001)support from Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘The low-temperature performance of Li-ion batteries(LIBs) has important impacts on their commercial applications. Besides the metallic lithium deposition, which is regarded as one of the main failure mechanisms of the LIBs at low temperatures, the synergistic effects originating from the cathode, anode, electrolyte, and separators to the batteries are still not clear. Here, the 21700-type cylindrical batteries were evaluated at a wide range of temperatures to investigate the failure mechanism of batteries. Voltage relaxation, and the post-mortem analysis combined with the electrochemical tests, unravel that the capacity degradation of batteries at low temperature is related to the lithium plating at graphite anodes,the formation of unsatisfied solid deposited/decomposed electrolyte mixture phase on the anode, the precipitation of solvent in the electrolytes and the block of separator pores, and the uneven dissolved transition metal-ions from the cathode. We hope this finding may open up a new avenue to alleviate the capacity degradation of advanced LIBs at low temperatures and shed light on the development of outstanding low-temperature LIBs via simultaneous optimization of all the components including electrodes, electrolytes and separators.
基金the Major State Basic Research Program of China which provided for our financial support (No. 2005CB221501)
文摘For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extraction efficiency are pressure relief and infrared antireflection. We have analyzed the effect of mining conditions and the regularity of mine pressure distribution in front of the working face of a major coal mine of the Jiaozuo Industrial (Group) Co. as our test area, studied the width of the depressurization zone in slice mining and analyzed gas efficiency and fast drainage in the advanced stress relaxation zone. On that basis, we further investigated and practiced the exploitation technology of shallow drilling, fan dril- ling and grid shape drilling at the working face. Practice and our results show that the stress relaxation zone is the ideal region for quick and efficient extraction of gas. By means of an integrated extraction technology, the amount of gas emitted into the zone was greatly reduced, while the risk of dangerous outbursts of coal and gas was lowered markedly. This exploration provides a new way to control for gas in working faces of coal mines with low permeability and risk of gas outbursts of single coal seams in the Jiaozuo mining area.
基金Funded by National Natural Science Foundation of China(No.51474170)the Key Laboratory Project of Shaanxi Provincial Department of Education(No.20js075)。
文摘The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.