The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the ...The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.展开更多
Compared with using semi-automatic gas shielded arc welding, using automatic TANDEM twin wire welding and twin wire gas metal arc welding (GMAW) to weld Q690 steel, a low-alloy high-strength structural steel used in...Compared with using semi-automatic gas shielded arc welding, using automatic TANDEM twin wire welding and twin wire gas metal arc welding (GMAW) to weld Q690 steel, a low-alloy high-strength structural steel used in the hydraulic support in the fully-mechanized mining face, the welding speed, deposition rate, production environment and welding quality can be obviously improved. Compared with GMAW twin wire welding, a refined micro- structure in the weld and heat-affected zone (HAZ), narrow HAZ and improved joint strength were achieved with TANDEM on Q690. Also, due to the push-pull pulsed way in TANDEM welding, the droplet transfer, distribution on heat flow and interaction between two arcs were completely different from those in GMAW twin wire system. The heat input of TANDEM is only about 76.6% of GMAW, and correspondingly, the welding speed and welding seam can be obviously improved. The complete oscillation caused by TANDEM pulsed current occurred in the welding pool, which refined the grains in the microstructure. The results show that TANDEM twin wire welding is very suitable in the welding of Q690 used in the hydraulic support.展开更多
为综合优化离心泵作透平的水力和声学性能,建立了一种基于响应面的离心泵作透平水力和声学性能多目标优化方法。首先在对比分析叶轮几何参数对透平水力和噪声影响的基础上,根据敏感度筛选出对噪声影响显著的关键参数;进而应用响应面方...为综合优化离心泵作透平的水力和声学性能,建立了一种基于响应面的离心泵作透平水力和声学性能多目标优化方法。首先在对比分析叶轮几何参数对透平水力和噪声影响的基础上,根据敏感度筛选出对噪声影响显著的关键参数;进而应用响应面方法构造显著变量与多目标函数的响应面多元回归模型,分析影响水力效率与噪声的参数间交互作用;最终以水力效率不降低和总声压级最小为响应目标,兼顾性能与噪声确定最优参数组合,即叶片进口安放角为19.5°,叶片出口安放角为20°,叶片出口宽度为16 mm,叶片包角为92°,叶轮进口直径为101 mm,叶片数为12。对某离心泵作透平多目标优化结果表明,叶轮进口直径、叶片出口宽度、叶片数及叶片包角对内场噪声总声压级影响显著;响应面模型能够反映参数与响应值之间的相关性;经试验验证优化后透平水力效率平均提高了1.98个百分点,总声压级降低了4.95 d BA,表明采用的响应面法能够在不影响透平原有水力性能的前提下改善声学性能。展开更多
基金supported by National Natural Science Foundation of China (Grant No. 21076198)Zhejiang Provincial Natural Science Foundation of China (Granted No. R1100530)National Basic Research Program of China (973 Program,Grant No. 2009CB724303)
文摘The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.
基金Item Sponsored by National Natural Science Foundation of China(51005106)A Project Funded by Priority Academic Program Development of Jiangsu Higher Education Institutions of ChinaAdvanced Welding Technology Key Laboratory Open Foundation Funded Projects in Jiangsu Province of China
文摘Compared with using semi-automatic gas shielded arc welding, using automatic TANDEM twin wire welding and twin wire gas metal arc welding (GMAW) to weld Q690 steel, a low-alloy high-strength structural steel used in the hydraulic support in the fully-mechanized mining face, the welding speed, deposition rate, production environment and welding quality can be obviously improved. Compared with GMAW twin wire welding, a refined micro- structure in the weld and heat-affected zone (HAZ), narrow HAZ and improved joint strength were achieved with TANDEM on Q690. Also, due to the push-pull pulsed way in TANDEM welding, the droplet transfer, distribution on heat flow and interaction between two arcs were completely different from those in GMAW twin wire system. The heat input of TANDEM is only about 76.6% of GMAW, and correspondingly, the welding speed and welding seam can be obviously improved. The complete oscillation caused by TANDEM pulsed current occurred in the welding pool, which refined the grains in the microstructure. The results show that TANDEM twin wire welding is very suitable in the welding of Q690 used in the hydraulic support.
文摘为综合优化离心泵作透平的水力和声学性能,建立了一种基于响应面的离心泵作透平水力和声学性能多目标优化方法。首先在对比分析叶轮几何参数对透平水力和噪声影响的基础上,根据敏感度筛选出对噪声影响显著的关键参数;进而应用响应面方法构造显著变量与多目标函数的响应面多元回归模型,分析影响水力效率与噪声的参数间交互作用;最终以水力效率不降低和总声压级最小为响应目标,兼顾性能与噪声确定最优参数组合,即叶片进口安放角为19.5°,叶片出口安放角为20°,叶片出口宽度为16 mm,叶片包角为92°,叶轮进口直径为101 mm,叶片数为12。对某离心泵作透平多目标优化结果表明,叶轮进口直径、叶片出口宽度、叶片数及叶片包角对内场噪声总声压级影响显著;响应面模型能够反映参数与响应值之间的相关性;经试验验证优化后透平水力效率平均提高了1.98个百分点,总声压级降低了4.95 d BA,表明采用的响应面法能够在不影响透平原有水力性能的前提下改善声学性能。