The event Permian-Triassic boundary (EPTB) is well marked by the famous 'white clay' of bed 25 in Mei-shan Section located in Changxing county, Zhejiang province of China. In this note, the white clay as well ...The event Permian-Triassic boundary (EPTB) is well marked by the famous 'white clay' of bed 25 in Mei-shan Section located in Changxing county, Zhejiang province of China. In this note, the white clay as well as its overlying and underlying sequences is investigated particularly for mineralogical records. The investigation yields three findings that contribute to better understanding the scenario of the EPTB mass extinction. (i) A red goethite-rich microlayer (0.3 mm) is first recognized to be horizontally widespread on the base of the white clay in the section. The microlayer should be considered as a macro geochemical indicator naturally tracing a catastrophic initiation at the EPTB. (ii) An interruption of marine carbonate deposition is discovered due to blank of carbonate minerals in the white clay. The discovery provides significant evidence of a marine acidification event that would occur in the paleo-ocean with marine acidity estimated at pH【4.0 at least and be triggered by the ultimate展开更多
Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in...Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnOx), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaC12 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.展开更多
We fabricated and characterized two hybrid adsorbents originated from hydrated ferric oxides (HFOs) using a polymeric anion exchanger D201 and calcite as host. The resultant adsorbents (denoted as HFO-201 and IOCCS...We fabricated and characterized two hybrid adsorbents originated from hydrated ferric oxides (HFOs) using a polymeric anion exchanger D201 and calcite as host. The resultant adsorbents (denoted as HFO-201 and IOCCS) were employed for Sb(V) removal from water. Increasing solution pH from 3 to 9 apparently weakened Sb(V) removal by both composites, while increasing temperature from 293 to 313 K only improved Sb(V) uptake by IOCCS. HFO-201 exhibited much higher capacity for Sb(V) than for IOCCS in the absence of other anions in solution. Increasing ionic strength from 0.01 to 0.1 mol/L NaNO3 would result in a significant drop of the capacity of HFO-201 in the studied pH ranges; however, negligible effect was observed for 1OCCS under similar conditions. Similarly, the competing chloride and sulfate pose more negative effect on Sb(V) adsorption by HFO-201 than by IOCCS, and the presence of silicate greatly decreased their adsorption simultaneously, while calcium ions were found to promote the adsorption of both adsorbents. XPS analysis further demonstrated that preferable Sb(V) adsorption by both hybrids was attributed to the inner sphere complexation of Sb(V) and HFO, and Ca(II) induced adsorption enhancement possibly resulted from the formation of HFO-Ca-Sb complexes. Column adsorption runs proved that Sb(V) in the synthetic water could be effectively removed from 30 μg/L to below 5μg/L (the drinking water standard regulated by China), and the effective treatable volume of IOCCS was around 6 times as that of HFO-201, implying that HFO coatings onto calcite might be a more effective approach than immobilization inside D201.展开更多
Halogenated aromatic compounds have attracted increasing concerns due to their toxicity and persistency in the environment, and dehalogenation is one of the promising treatment and detoxification methods. Herein, we s...Halogenated aromatic compounds have attracted increasing concerns due to their toxicity and persistency in the environment, and dehalogenation is one of the promising treatment and detoxification methods. Herein, we systematically studied the debromination efficiency and mechanism of para-bromophenol(4-BP) by a recently developed UV/sulfite process. 4-BP underwent rapid degradation with the kinetics accelerated with the increasing sulfite concentration, pH(6.1–10) and temperature, whereas inhibited by dissolved oxygen and organic solvents. The apparent activation energy was estimated to be 27.8 kJ/mol. The degradation mechanism and pathways of 4-BP were explored by employing N2O and nitrate as the electron scavengers and liquid chromatography/mass spectrometry to identify the intermediates. 4-BP degradation proceeded via at least two pathways including direct photolysis and hydrated electron-induced debromination. The contributions of both pathways were distinguished by quantifying the quantum yields of 4-BP via direct photolysis and hydrated electron production in the system. 4-BP could be readily completely debrominated with all the substituted Br released as Br-, and the degradation pathways were also proposed. This study would shed new light on the efficient dehalogenation of brominated aromatics by using the UV/sulfite process.展开更多
Aqueous Zn-ion batteries(ZIBs)hold great potential in large-scale energy storage systems due to the merits of low-cost and high safety.However,the unstable structure of cathode materials and sluggish(de)intercalation ...Aqueous Zn-ion batteries(ZIBs)hold great potential in large-scale energy storage systems due to the merits of low-cost and high safety.However,the unstable structure of cathode materials and sluggish(de)intercalation kinetics of Zn2+pose challenges for further development.Herein,highly reversible aqueous ZIBs are constructed with layered hydrated vanadium oxide as a cathode material.The electrochemical performances are further tested with the optimized electrolyte of 3M Zn(CF3SO3)2 and a cut-off voltage of 0.4 to 1.3 V,exhibiting a remarkable capacity of 290mAh g−1 at 0.5Ag−1,and long-term cycling stability at high current density.Furthermore,the Zn2+storage mechanism of V3O7⋅H2O is recognized as a highly reversible(de)intercalation process with good structural stability,implying the potential application in the field of large-scale energy storage.展开更多
Crystal structure of a novel hydrated tridecameric polyaluminium chloride, [Al13(μ3-OH)6(μ2-OH)6(μ2-OH)12(H2O)24] Cl15·13H2O, has been determined by X-ray structure analysis, obtaining the detailed str...Crystal structure of a novel hydrated tridecameric polyaluminium chloride, [Al13(μ3-OH)6(μ2-OH)6(μ2-OH)12(H2O)24] Cl15·13H2O, has been determined by X-ray structure analysis, obtaining the detailed structural parameters and structure features. Moreover, the formation course was also discussed. The crystal belongs to monoclinic system, space group P21/c, with a = 1.3912(2), b = 2.3529(3), c = 2.2395(2) nm, β= 90.407(2)°, V = 7.3307(14) nm^3, Z = 4, Dc = 1.773 g/cm^3, F(000) = 4040, GOOF = 1.050,μ(MoKα)= 0.829 mm^-1, the final R = 0.0506 and wR = 0.1453 for 10553 observed reflections with I〉 2σ(I). The structure of polycation of the title compound is different from either Keggin-type Al13 consisting of a central tetrahedral AlO4 core surrounded by twelve octahedral AlO6 units through corner-sharing or the "three hexameric rings juxtaposed" side by side predicted by "Core-Links" model linked by thirteen octahedral AlO6 units through edge-sharing. It has a "tortoise-like" structure with turnup "forefeet" and "tail", that is, an octahedral AlO6 core is surrounded by a "hexameric ring" through edge-sharing, then six octahedral AlO6 units are suspended onto the periphery of the ring upper and lower alternately by sharing two neighboring corners with an average turn angle of 21° entad. This kind of hydrated tridecameric polyaluminium chloride with such form is very important to further understand the existing forms and transformation rules of aluminium ion in hydrolysis system of its salts, speculate the process and mechanism of various hydrolysis and polymerization forms from Al(H2O)6^3+ to Al(OH)3, and establish the relationship between structure and properties.展开更多
An efficient and environmentally benign conversion of aldehydes into the corresponding gem-dicarboxylates was realized by using hydrated ferric sulfate as a heterogeneous catalyst. In addition to its high efficiency,...An efficient and environmentally benign conversion of aldehydes into the corresponding gem-dicarboxylates was realized by using hydrated ferric sulfate as a heterogeneous catalyst. In addition to its high efficiency, the catalyst can be recovered simply and reused efficiently for at least seven times.展开更多
Aluminum-oxide-hydroxide (AIOOH) is a clean and non-toxic flame retardant. There have been many trials for the fabrication of ultrafine AIOOH, Two main approaches exist for nano-AlOOH synthesis: reactive precipitat...Aluminum-oxide-hydroxide (AIOOH) is a clean and non-toxic flame retardant. There have been many trials for the fabrication of ultrafine AIOOH, Two main approaches exist for nano-AlOOH synthesis: reactive precipitation and batch hydrothermal synthesis, Both approaches are laborious and time consuming with poor control of particle morphology. We report on the novel continuous flow manufacture of AIOOH nanorods with controlled morphology (particle size and shape) by hydrothermal synthesis. AIOOH was harvested from its mother liquor (colloidal solution) using poly(acrylamide-co-acrylic acid) copolymer as a flocculating agent. The developed AIOOH shape and size, crystalline phase, thermal stability, and endothermic heat sink action were investigated by transmission electron microscopy, X-ray diffractome- try, thermogravimetric analysis, and differential scanning calorimetry, respectively. The phase transition of AlOOH to Al2O3 was demonstrated by conducting different X-ray diffractometry scans from 400 to 700℃. These results may provide an option for the continuous synthesis of nano-AIOOH as a clean and non-toxic flame retardant with excellent thermal stability. Consequently, enhanced flammability properties can be achieved at low solids loading.展开更多
In the present study a novel technique was proposed to prepare a polymer-supported hydrated ferric oxide (D201-HFO) based on Donnan membrane effect by using a strongly basic anion exchanger D201 as the host material a...In the present study a novel technique was proposed to prepare a polymer-supported hydrated ferric oxide (D201-HFO) based on Donnan membrane effect by using a strongly basic anion exchanger D201 as the host material and FeCl3-HCl-NaCl solution as the reaction environment. D201-HFO was found to exhibit higher capacity for arsenic removal than a commercial sorbent Purolite ArsenX. Furthermore, it presents favorable adsorption selectivity for arsenic removal from aqueous solution, as well as satis- factory kinetics. Fixed-bed column experiments showed that arsenic sorption on D201-HFO could re- sult in concentration of this toxic metalloid element below 10 μg/L, which was the new maximum con- centration limit set recently by the European Commission and imposed by the US EPA and China. Also, the spent D201-HFO is amenable to efficient regeneration by NaOH-NaCl solution.展开更多
In order to consume the Yellow River sediment as much as possible and improve the longterm stability of the Yellow River, Yellow River sediment was utilized as the main raw material to produce a composite material. Ca...In order to consume the Yellow River sediment as much as possible and improve the longterm stability of the Yellow River, Yellow River sediment was utilized as the main raw material to produce a composite material. Ca(OH)_2 was used as alkali-activator to activate the active SiO_2 and Al_2O_3 compositions in Yellow River sediment. 10 wt% slag was added into the mixture to further improve the strength of the composites. The effect of activity rate of the Yellow River sediment and dosage of Ca(OH) _2 on the compressive strength of the Yellow River sediment-slag composite material at different curing ages was researched. XRD, SEM/EDS, light microscope and FTIR were used to further explore the products and the microstructure of the composite material. Results showed that the active ratio of sediment had a great influence on the compressive strength of specimen. In addition, the compressive strength of specimen increased with the increase of Ca(OH)_2dosage and curing age. When the dosage of Ca(OH)_2 was more than 5 wt% as well as the curing age reached 90 days, the compressive strength of the composite material could meet the engineering requirement. In the alkali-activated process, the main product was hydrated calcium silicate(C-S-H) gel, which filled up the gaps among the sediment particles and decreased the porosity of the specimen. Moreover, the CaCO_3 produced by the carbonization of the C-S-H gel and excess Ca(OH)_2 also played a role on the strength.展开更多
Hydrated ferric oxide(HFO)has high adsorption efficiency for As(Ⅲ).However,its high self-aggregation usually reduces the efficiency and limits the scaledup application.Herein,biochar(BC),with large surface area and a...Hydrated ferric oxide(HFO)has high adsorption efficiency for As(Ⅲ).However,its high self-aggregation usually reduces the efficiency and limits the scaledup application.Herein,biochar(BC),with large surface area and amounts of surface functional groups was used to tune the loading and distribution of HFO to prepare an efficient adsorbent(HFO/BC)via in-situ synthesis method.The influence of the mass ratio of iron salt to BC on HFO/BC morphology was investigated,and the mechanism was discussed.The results showed that novel HFO was formed and distributed uniformly on the surface of BC when the mass ratio of iron salt to BC was 5:1.The adsorption kinetics and isotherms studies show that the novel HFO/BC(5:1)composite can fast treat As(Ⅲ)with a high adsorption capacity of 104.55 mg·g^(-1),indicating that it is a potential material for removing arsenic from polluted water.展开更多
The unprecedentedly growing demand for energy storage devices in recent years calls for diversified chemistries with unique advantages.When it comes to safety and cost,aqueous battery systems have attracted tremendous...The unprecedentedly growing demand for energy storage devices in recent years calls for diversified chemistries with unique advantages.When it comes to safety and cost,aqueous battery systems have attracted tremendous attention.Owing to its small size,high polarity,and hydrogen bonding,water in the electrode materials,either in the form of structural water or cointercalated hydrated cations,drastically change the electrochemical behavior through multiple aspects.This review discusses the roles of water in aqueous batteries from how water molecules coordinate with cations to examples of watermediated reactions in different types of host materials.展开更多
The resilient modulus (RM) of hydrated cement treated crushed rock base (HCTCRB) affected by amount of hydration periods, compaction and dryback processes was presented using repeated load triaxial tests. The rela...The resilient modulus (RM) of hydrated cement treated crushed rock base (HCTCRB) affected by amount of hydration periods, compaction and dryback processes was presented using repeated load triaxial tests. The related trends of RM corresponding to the different hydration periods still cannot be concluded. Instead, It is found that the moisture content plays more major influence on the RM performance. Higher additional water during compaction of HCTCRB, even at its optimum moisture content and induced higher dry density, led to the inferior RM performance compared to the sample without water addition. The RM of damper samples can be improved through dryback process and superior to that of the sample without water addition at the same moisture content. However, the samples withut water addition during compaction deliver the comparable RM values even its dry density is lower than the other two types. These results indicate the significant influence of moisture content to the performances of HCTCRB with regardless of the dry density. Finally, the experimental results of HCT- CRB and parent material are evaluated with the K-O model and the model recommended by Austroads. These two models provide the excellent fit of the tested results with high degree of determination.展开更多
Black precipitates were successfully obtained by radiolytic reduction of ammonium uranyl tricarbonate in the aqueous solution of HCOONH_4 by one step.TEM,SAED,EDS,and XRD analysis indicated that the precipitates consi...Black precipitates were successfully obtained by radiolytic reduction of ammonium uranyl tricarbonate in the aqueous solution of HCOONH_4 by one step.TEM,SAED,EDS,and XRD analysis indicated that the precipitates consist of hollow UO2 nanospheres(φ:30-50 nm,wall thickness:8-15 nm,and cavity diameter:10-20 nm).The effect of HCOONH4 concentration,irradiation time and dose rate on the morphology,and size of nanospheres was investigated.Then,a gas-bubble template mechanism was proposed.展开更多
The efficient removal of phosphorous from water is an important but challenging task. In this study, we validated the applicability of a new commercially available nanocomposite adsorbent, i.e., a polymer-based hydrat...The efficient removal of phosphorous from water is an important but challenging task. In this study, we validated the applicability of a new commercially available nanocomposite adsorbent, i.e., a polymer-based hydrated ferric oxide nanocomposite (HFO-201), for the further removal of phosphorous from the bioefftuent discharged from a municipal wastewater treatment plant, and the operating parameters such as the flow rate, temperature and composition of the regenerants were optimized. Labora- tory-scale results indicate that phosphorous in real bioeffluent can be effectively removed from 0.92 mg· L^-1 to 〈 0.5 mg· L^-1 (or even 〈 0.1 mg·L^-1 as desired) by the new adsorbent at a flow rate of 50 bed volume (BV) per hour and treatable volume of 3500-4000BV per run. Phosphorous removal is independent of the ambient temperature in the range of 15℃-40℃. Moreover, the exhausted HFO-201 can be regenerated by a 2% NaOH + 5% NaC1 binary solution for repeated use without significant capacity loss. A scaled-up study further indicated that even though the initial total phosphorus (TP) was as high as 2 mg·L^-1, it could be reduced to 〈 0.5 mg·L^-1, with a working capacity of 4.4-4.8 g·L^-1 HFO- 201. In general, HFO-201 adsorption is a choice method for the efficient removal of phosphate from biotreated waste effluent.展开更多
The formation and transformation of ettringite were studied by measuring the ion concentration in liquid phase and analyzing the composition in solid phase. The effects of C3A, gypsum lime and C-S-H gel on ettringite...The formation and transformation of ettringite were studied by measuring the ion concentration in liquid phase and analyzing the composition in solid phase. The effects of C3A, gypsum lime and C-S-H gel on ettringite formation and transformation were also investigated. The experimental results shuw, that, when gypsum was presented in solid phase, the composition of liquid phase was in favor of ettringite formation. Ettringite formation consisted of three reactions including the formation of [ Al (OH)6 ]^3- octahedral, formation of Ca-Al polyhedra prism in which Ca and Al polyhedra arranged alternately, as well as entrance of SO4^2- into the channel of polyhedra. [ Al (OH)6 ]^3- formation, which was the slowest reaction, controlled ettringite formation. The concentration of AlO2^- was a main factor that influenced ettringite formation. After gypsum in solid phase was consumed, [ SO4^2- ] decreased quickly and [ AlO2^- ] increased, and it was possible that ettringite transformed into hydrated monsulfate calcium aluminate ( be called M in short) in thermodymanics. The rate of transformation was controlled by diffusion of AlO2^- .展开更多
This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on...This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms.展开更多
基金This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 40072055 and 40043010).
文摘The event Permian-Triassic boundary (EPTB) is well marked by the famous 'white clay' of bed 25 in Mei-shan Section located in Changxing county, Zhejiang province of China. In this note, the white clay as well as its overlying and underlying sequences is investigated particularly for mineralogical records. The investigation yields three findings that contribute to better understanding the scenario of the EPTB mass extinction. (i) A red goethite-rich microlayer (0.3 mm) is first recognized to be horizontally widespread on the base of the white clay in the section. The microlayer should be considered as a macro geochemical indicator naturally tracing a catastrophic initiation at the EPTB. (ii) An interruption of marine carbonate deposition is discovered due to blank of carbonate minerals in the white clay. The discovery provides significant evidence of a marine acidification event that would occur in the paleo-ocean with marine acidity estimated at pH【4.0 at least and be triggered by the ultimate
基金Project supported by the Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sport, and Technology of Japan (No.13876015).
文摘Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnOx), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaC12 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.
基金supported by the National Natural Science Foundation of China(No.21177059)the Depart-ment of Science and Technology,Jiangsu Province(No.BK2012017/2011016,BE2012160)
文摘We fabricated and characterized two hybrid adsorbents originated from hydrated ferric oxides (HFOs) using a polymeric anion exchanger D201 and calcite as host. The resultant adsorbents (denoted as HFO-201 and IOCCS) were employed for Sb(V) removal from water. Increasing solution pH from 3 to 9 apparently weakened Sb(V) removal by both composites, while increasing temperature from 293 to 313 K only improved Sb(V) uptake by IOCCS. HFO-201 exhibited much higher capacity for Sb(V) than for IOCCS in the absence of other anions in solution. Increasing ionic strength from 0.01 to 0.1 mol/L NaNO3 would result in a significant drop of the capacity of HFO-201 in the studied pH ranges; however, negligible effect was observed for 1OCCS under similar conditions. Similarly, the competing chloride and sulfate pose more negative effect on Sb(V) adsorption by HFO-201 than by IOCCS, and the presence of silicate greatly decreased their adsorption simultaneously, while calcium ions were found to promote the adsorption of both adsorbents. XPS analysis further demonstrated that preferable Sb(V) adsorption by both hybrids was attributed to the inner sphere complexation of Sb(V) and HFO, and Ca(II) induced adsorption enhancement possibly resulted from the formation of HFO-Ca-Sb complexes. Column adsorption runs proved that Sb(V) in the synthetic water could be effectively removed from 30 μg/L to below 5μg/L (the drinking water standard regulated by China), and the effective treatable volume of IOCCS was around 6 times as that of HFO-201, implying that HFO coatings onto calcite might be a more effective approach than immobilization inside D201.
基金supported by the National Natural Science Foundation of China(No.21307057)the Natural Science Foundation of Jiangsu Province(No.BK20130577)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP,No.20130091120014)the Fundamental Research Funds for the Central Universities(No.20620140128)
文摘Halogenated aromatic compounds have attracted increasing concerns due to their toxicity and persistency in the environment, and dehalogenation is one of the promising treatment and detoxification methods. Herein, we systematically studied the debromination efficiency and mechanism of para-bromophenol(4-BP) by a recently developed UV/sulfite process. 4-BP underwent rapid degradation with the kinetics accelerated with the increasing sulfite concentration, pH(6.1–10) and temperature, whereas inhibited by dissolved oxygen and organic solvents. The apparent activation energy was estimated to be 27.8 kJ/mol. The degradation mechanism and pathways of 4-BP were explored by employing N2O and nitrate as the electron scavengers and liquid chromatography/mass spectrometry to identify the intermediates. 4-BP degradation proceeded via at least two pathways including direct photolysis and hydrated electron-induced debromination. The contributions of both pathways were distinguished by quantifying the quantum yields of 4-BP via direct photolysis and hydrated electron production in the system. 4-BP could be readily completely debrominated with all the substituted Br released as Br-, and the degradation pathways were also proposed. This study would shed new light on the efficient dehalogenation of brominated aromatics by using the UV/sulfite process.
基金This study was supported by the National Natural Science Foundation of China(Grant no.51932011,51972346,51802356,and 51872334)Innovation-Driven Project of Central South University(No.2020CX024).
文摘Aqueous Zn-ion batteries(ZIBs)hold great potential in large-scale energy storage systems due to the merits of low-cost and high safety.However,the unstable structure of cathode materials and sluggish(de)intercalation kinetics of Zn2+pose challenges for further development.Herein,highly reversible aqueous ZIBs are constructed with layered hydrated vanadium oxide as a cathode material.The electrochemical performances are further tested with the optimized electrolyte of 3M Zn(CF3SO3)2 and a cut-off voltage of 0.4 to 1.3 V,exhibiting a remarkable capacity of 290mAh g−1 at 0.5Ag−1,and long-term cycling stability at high current density.Furthermore,the Zn2+storage mechanism of V3O7⋅H2O is recognized as a highly reversible(de)intercalation process with good structural stability,implying the potential application in the field of large-scale energy storage.
基金Project supported by NNSFC (No. 20563002), NSF of Inner Mongolia Autonomous Region (200508010204) and Key Item Foundation of Education Committee of Inner Mongolia Autonomous Region (ZD01070)
文摘Crystal structure of a novel hydrated tridecameric polyaluminium chloride, [Al13(μ3-OH)6(μ2-OH)6(μ2-OH)12(H2O)24] Cl15·13H2O, has been determined by X-ray structure analysis, obtaining the detailed structural parameters and structure features. Moreover, the formation course was also discussed. The crystal belongs to monoclinic system, space group P21/c, with a = 1.3912(2), b = 2.3529(3), c = 2.2395(2) nm, β= 90.407(2)°, V = 7.3307(14) nm^3, Z = 4, Dc = 1.773 g/cm^3, F(000) = 4040, GOOF = 1.050,μ(MoKα)= 0.829 mm^-1, the final R = 0.0506 and wR = 0.1453 for 10553 observed reflections with I〉 2σ(I). The structure of polycation of the title compound is different from either Keggin-type Al13 consisting of a central tetrahedral AlO4 core surrounded by twelve octahedral AlO6 units through corner-sharing or the "three hexameric rings juxtaposed" side by side predicted by "Core-Links" model linked by thirteen octahedral AlO6 units through edge-sharing. It has a "tortoise-like" structure with turnup "forefeet" and "tail", that is, an octahedral AlO6 core is surrounded by a "hexameric ring" through edge-sharing, then six octahedral AlO6 units are suspended onto the periphery of the ring upper and lower alternately by sharing two neighboring corners with an average turn angle of 21° entad. This kind of hydrated tridecameric polyaluminium chloride with such form is very important to further understand the existing forms and transformation rules of aluminium ion in hydrolysis system of its salts, speculate the process and mechanism of various hydrolysis and polymerization forms from Al(H2O)6^3+ to Al(OH)3, and establish the relationship between structure and properties.
文摘An efficient and environmentally benign conversion of aldehydes into the corresponding gem-dicarboxylates was realized by using hydrated ferric sulfate as a heterogeneous catalyst. In addition to its high efficiency, the catalyst can be recovered simply and reused efficiently for at least seven times.
基金Financial support of the research project entitled "Enhanced Flame Retardant Polymer Nanocomposites" has been provided by Military Technical College,Cairo,Egypt
文摘Aluminum-oxide-hydroxide (AIOOH) is a clean and non-toxic flame retardant. There have been many trials for the fabrication of ultrafine AIOOH, Two main approaches exist for nano-AlOOH synthesis: reactive precipitation and batch hydrothermal synthesis, Both approaches are laborious and time consuming with poor control of particle morphology. We report on the novel continuous flow manufacture of AIOOH nanorods with controlled morphology (particle size and shape) by hydrothermal synthesis. AIOOH was harvested from its mother liquor (colloidal solution) using poly(acrylamide-co-acrylic acid) copolymer as a flocculating agent. The developed AIOOH shape and size, crystalline phase, thermal stability, and endothermic heat sink action were investigated by transmission electron microscopy, X-ray diffractome- try, thermogravimetric analysis, and differential scanning calorimetry, respectively. The phase transition of AlOOH to Al2O3 was demonstrated by conducting different X-ray diffractometry scans from 400 to 700℃. These results may provide an option for the continuous synthesis of nano-AIOOH as a clean and non-toxic flame retardant with excellent thermal stability. Consequently, enhanced flammability properties can be achieved at low solids loading.
基金Partially supported by the National Natural Science Foundation of China (Grant No. 20504012)the Natural Science Foundation of Jiangsu Province (Grant No. BK2006129)the Scientific Research Foundation of Graduate School of Nanjing University (Grant No. 2006CL11)
文摘In the present study a novel technique was proposed to prepare a polymer-supported hydrated ferric oxide (D201-HFO) based on Donnan membrane effect by using a strongly basic anion exchanger D201 as the host material and FeCl3-HCl-NaCl solution as the reaction environment. D201-HFO was found to exhibit higher capacity for arsenic removal than a commercial sorbent Purolite ArsenX. Furthermore, it presents favorable adsorption selectivity for arsenic removal from aqueous solution, as well as satis- factory kinetics. Fixed-bed column experiments showed that arsenic sorption on D201-HFO could re- sult in concentration of this toxic metalloid element below 10 μg/L, which was the new maximum con- centration limit set recently by the European Commission and imposed by the US EPA and China. Also, the spent D201-HFO is amenable to efficient regeneration by NaOH-NaCl solution.
基金Funded by the National Natural Science Foundation of China(Nos.51578108,51878116,51809109)the Fundamental Research Fund for the Central Universities(No.DUT18ZD219)National Key R&D Program of China(No.2017YFC0504506)
文摘In order to consume the Yellow River sediment as much as possible and improve the longterm stability of the Yellow River, Yellow River sediment was utilized as the main raw material to produce a composite material. Ca(OH)_2 was used as alkali-activator to activate the active SiO_2 and Al_2O_3 compositions in Yellow River sediment. 10 wt% slag was added into the mixture to further improve the strength of the composites. The effect of activity rate of the Yellow River sediment and dosage of Ca(OH) _2 on the compressive strength of the Yellow River sediment-slag composite material at different curing ages was researched. XRD, SEM/EDS, light microscope and FTIR were used to further explore the products and the microstructure of the composite material. Results showed that the active ratio of sediment had a great influence on the compressive strength of specimen. In addition, the compressive strength of specimen increased with the increase of Ca(OH)_2dosage and curing age. When the dosage of Ca(OH)_2 was more than 5 wt% as well as the curing age reached 90 days, the compressive strength of the composite material could meet the engineering requirement. In the alkali-activated process, the main product was hydrated calcium silicate(C-S-H) gel, which filled up the gaps among the sediment particles and decreased the porosity of the specimen. Moreover, the CaCO_3 produced by the carbonization of the C-S-H gel and excess Ca(OH)_2 also played a role on the strength.
基金the National Natural Science Foundation of China(No.52173208)the Priority Academic Program Development of Jiangsu Higher Education Institutions and Qing Lan Project of Yangzhou University(Dr.LJL)。
文摘Hydrated ferric oxide(HFO)has high adsorption efficiency for As(Ⅲ).However,its high self-aggregation usually reduces the efficiency and limits the scaledup application.Herein,biochar(BC),with large surface area and amounts of surface functional groups was used to tune the loading and distribution of HFO to prepare an efficient adsorbent(HFO/BC)via in-situ synthesis method.The influence of the mass ratio of iron salt to BC on HFO/BC morphology was investigated,and the mechanism was discussed.The results showed that novel HFO was formed and distributed uniformly on the surface of BC when the mass ratio of iron salt to BC was 5:1.The adsorption kinetics and isotherms studies show that the novel HFO/BC(5:1)composite can fast treat As(Ⅲ)with a high adsorption capacity of 104.55 mg·g^(-1),indicating that it is a potential material for removing arsenic from polluted water.
基金The author would like to acknowledge the financial support from the U.S.Department of Energy's Office of Electricity under Contract no.70247A.
文摘The unprecedentedly growing demand for energy storage devices in recent years calls for diversified chemistries with unique advantages.When it comes to safety and cost,aqueous battery systems have attracted tremendous attention.Owing to its small size,high polarity,and hydrogen bonding,water in the electrode materials,either in the form of structural water or cointercalated hydrated cations,drastically change the electrochemical behavior through multiple aspects.This review discusses the roles of water in aqueous batteries from how water molecules coordinate with cations to examples of watermediated reactions in different types of host materials.
基金the Australian Research Council(ARC) for financial support under the ARC Linkage Scheme(LP100100734)
文摘The resilient modulus (RM) of hydrated cement treated crushed rock base (HCTCRB) affected by amount of hydration periods, compaction and dryback processes was presented using repeated load triaxial tests. The related trends of RM corresponding to the different hydration periods still cannot be concluded. Instead, It is found that the moisture content plays more major influence on the RM performance. Higher additional water during compaction of HCTCRB, even at its optimum moisture content and induced higher dry density, led to the inferior RM performance compared to the sample without water addition. The RM of damper samples can be improved through dryback process and superior to that of the sample without water addition at the same moisture content. However, the samples withut water addition during compaction deliver the comparable RM values even its dry density is lower than the other two types. These results indicate the significant influence of moisture content to the performances of HCTCRB with regardless of the dry density. Finally, the experimental results of HCT- CRB and parent material are evaluated with the K-O model and the model recommended by Austroads. These two models provide the excellent fit of the tested results with high degree of determination.
基金supported by National Natural Science Foundation of China(No.91226112)the specialized research fund for the Doctored Program of Higher Education of China(No.20110001120121)
文摘Black precipitates were successfully obtained by radiolytic reduction of ammonium uranyl tricarbonate in the aqueous solution of HCOONH_4 by one step.TEM,SAED,EDS,and XRD analysis indicated that the precipitates consist of hollow UO2 nanospheres(φ:30-50 nm,wall thickness:8-15 nm,and cavity diameter:10-20 nm).The effect of HCOONH4 concentration,irradiation time and dose rate on the morphology,and size of nanospheres was investigated.Then,a gas-bubble template mechanism was proposed.
文摘The efficient removal of phosphorous from water is an important but challenging task. In this study, we validated the applicability of a new commercially available nanocomposite adsorbent, i.e., a polymer-based hydrated ferric oxide nanocomposite (HFO-201), for the further removal of phosphorous from the bioefftuent discharged from a municipal wastewater treatment plant, and the operating parameters such as the flow rate, temperature and composition of the regenerants were optimized. Labora- tory-scale results indicate that phosphorous in real bioeffluent can be effectively removed from 0.92 mg· L^-1 to 〈 0.5 mg· L^-1 (or even 〈 0.1 mg·L^-1 as desired) by the new adsorbent at a flow rate of 50 bed volume (BV) per hour and treatable volume of 3500-4000BV per run. Phosphorous removal is independent of the ambient temperature in the range of 15℃-40℃. Moreover, the exhausted HFO-201 can be regenerated by a 2% NaOH + 5% NaC1 binary solution for repeated use without significant capacity loss. A scaled-up study further indicated that even though the initial total phosphorus (TP) was as high as 2 mg·L^-1, it could be reduced to 〈 0.5 mg·L^-1, with a working capacity of 4.4-4.8 g·L^-1 HFO- 201. In general, HFO-201 adsorption is a choice method for the efficient removal of phosphate from biotreated waste effluent.
文摘The formation and transformation of ettringite were studied by measuring the ion concentration in liquid phase and analyzing the composition in solid phase. The effects of C3A, gypsum lime and C-S-H gel on ettringite formation and transformation were also investigated. The experimental results shuw, that, when gypsum was presented in solid phase, the composition of liquid phase was in favor of ettringite formation. Ettringite formation consisted of three reactions including the formation of [ Al (OH)6 ]^3- octahedral, formation of Ca-Al polyhedra prism in which Ca and Al polyhedra arranged alternately, as well as entrance of SO4^2- into the channel of polyhedra. [ Al (OH)6 ]^3- formation, which was the slowest reaction, controlled ettringite formation. The concentration of AlO2^- was a main factor that influenced ettringite formation. After gypsum in solid phase was consumed, [ SO4^2- ] decreased quickly and [ AlO2^- ] increased, and it was possible that ettringite transformed into hydrated monsulfate calcium aluminate ( be called M in short) in thermodymanics. The rate of transformation was controlled by diffusion of AlO2^- .
基金supported by an Australian Government Research Training Program(RTP)scholarship.
文摘This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms.