The irrational land use is one of the main reasons for the soil erosion and nutrient loss in the loess hilly area of China. In this project, 4 types of typical land use structure of sustain ment for about 15 years in ...The irrational land use is one of the main reasons for the soil erosion and nutrient loss in the loess hilly area of China. In this project, 4 types of typical land use structure of sustain ment for about 15 years in the loess hill slope are selected to study the effect of land use structure on the distribution of soil nutrients. From hill bottom to hill top, the patterns of land use types are:, grassland-slope farmland-forest, slope farmland-grassland-forest, terrace-grassland-forest and slope farmland-forest-grassland. By measuring the contents of the total N, total P, available N, available P and organic matter of soils, the results show that the land use structure types of slope farmland-grassland-forest and terrace-grassland-forest have a better capacity to maintain the soil nutrients.展开更多
Understanding soil nutrient distributions and the factors affecting them are crucial for fertilizer management and environmental protection in vulnerable ecological regions.Based on 555 soil samples collected in 2012 ...Understanding soil nutrient distributions and the factors affecting them are crucial for fertilizer management and environmental protection in vulnerable ecological regions.Based on 555 soil samples collected in 2012 in Renshou County,located in the purple soil hilly area of Sichuan Basin,China,the spatial variability of soil total nitrogen(TN),total phosphorus(TP)and total potassium(TK)was studied with geostatistical analysis and the relative roles of the affecting factors were quantified using regression analysis.The means of TN,TP and TK contents were 1.12,0.82 and 9.64 g kg^(–1),respectively.The coefficients of variation ranged from 30.56 to 38.75%and the nugget/sill ratios ranged from 0.45 to 0.61,indicating that the three soil nutrients had moderate variability and spatial dependence.Two distribution patterns were observed.TP and TK were associated with patterns of obvious spatial distribution trends while the spatial distribution of TN was characterized by higher variability.Soil group,land use type and topographic factors explained 26.5,35.6 and 8.4%of TN variability,respectively,with land use being the dominant factor.Parent material,soil group,land use type and topographic factors explained 17.5,10.7,12.0 and 5.0%of TP variability,respectively,and both parent material and land use type played important roles.Only parent material and soil type contributed to TK variability and could explain 25.1 and 13.7%of TK variability,respectively.More attention should focus on adopting reasonable land use types for the purposes of fertilizer management and consider the different roles of the affecting factors at the landscape scale in this purple soil hilly area.展开更多
Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on segments was used to analyze the runoff data...Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on segments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm, Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation, rill cannot happen within the top 50 m, while in a year with large and intensive precipitation, rill can be formed starting even at 15 m from the top of the slope.展开更多
Scientific evidence for the upper limit of farmland is proposed. Shallow gully erosion is one of erosion types distributed extensively on sloping farmland in the hilly regions of the Loess Plateau. Field observation a...Scientific evidence for the upper limit of farmland is proposed. Shallow gully erosion is one of erosion types distributed extensively on sloping farmland in the hilly regions of the Loess Plateau. Field observation and aerial photos interpretation, as well as laboratory experiments show that the shallow gully erosion occurring on the steeper farmland in the hilly regions of the Loess Plateau is an important factor leading to intensive erosion on slope, because of its extensive distribution and intensive runoff collection. The data on the formation, development and distribution of shallow gullies on sloping farmland indicate that critical slope gradient for shallow gully initiation ranges from 15 to 20 degrees with an average of 18.2 degrees. Therefore, it is suggested that critical slope gradient for compulsory abandonment of farmland on the hilly Loess Plateau should be kept within the critical slope gradient for shallow gully initiation to prevent shallow gully formation in order to control soil loss more effectively. But as the first step, the cultivation on the slopes with slope larger than 25 degrees where the maximum erosion occurs should be strictly forbidden.展开更多
The effects of environmental factors on carbon flux were analyzed, the spatial and temporal variation of carbon flux was studied at the two heights of 23 m and 39 m with the eddy covariance technique, and the carbon b...The effects of environmental factors on carbon flux were analyzed, the spatial and temporal variation of carbon flux was studied at the two heights of 23 m and 39 m with the eddy covariance technique, and the carbon budget was evaluated for evergreen coniferous plantation in the red earth hilly area during the year 2003. The results showed that photosynthetically active radiation (PAR) and soil temperature are essential factors strongly affecting the net ecosystem exchange (NEE); in the daytime, the response of NEE to PAR shows a rectangular hyperbola trend, and in the nighttime, the significant correlation was observed between soil temperature and soil respiration which was filtered using friction velocity. This ecosystem appeared as a carbon sink along the whole year of 2003, and the carbon flux showed the obvious seasonal fluctuation and diurnal variability. The seasonal peak of NEE occurred in May and June with the daily sum about 0.61-0.67 mg · CO2 · m-2 · s-1. For the severe drought in the mid-summer, the daily sum was 0.40-0.44 mg · CO2 · m-2 · s-1 in July which was only 2/3 of that in the last two months. For the lasted drought of the year, the nadir of NEE happened in the winder with the daily sum about -0.29 to -0.35 mg · CO2 · m-2 · s-1. The sink intensity of the ecosystem was about -0.553 to -0.645 kg · Cm-2 per year in 2003.展开更多
Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefo...Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefollowing four land use patterns: masson pine (Pznvs massonzana Lamb.) land, beautiful sweetgum (Ltq-uidambar fomosana Hance) land, vegetation reservation land, and artificial mowing land. The annualbiomass production of the masson pine land was 5060 kg ha ̄-1 being 4.9, 2.1, and 6.0 times that of the beau-tiful sweetgum land, the vegetation reservation land, and the artificial mowing land, respectively. Comparedwith the background values, the number of plant species for the vegetation reservation land increased by 10species after 10 years of land utilization, while for the masson pine and the beautiful sweetgum decreased by4, and for the artificial mowing land by 9. For masson pine land, total amount of N, P, K, Ca, and Mg neededfor producing 1000 kg dry matter was only 3.5 kg, annual element return through litter was 22 kg ha ̄-1, bothof which were much lower than those of the other patterns. Vegetation reservation was an effective measureto conserve soil and water and improve soil fertility in the red soil hilly region. Artificial mowing arousedserious degradation of vegetation and soil. Some measures and suggestions for management and exploitationof the red soil hilly region such as masson pine planting, closing hills for afforestation, and stereo-agricultureon one hill are proposed.展开更多
According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the prof...According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.展开更多
Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of ...Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the展开更多
Background:Schistosomiasis remains a major public health concern in China.Since 2004,an integrated strategy was developed to control the transmission of Schistosoma japonicum in China.However,the long-term effectivene...Background:Schistosomiasis remains a major public health concern in China.Since 2004,an integrated strategy was developed to control the transmission of Schistosoma japonicum in China.However,the long-term effectiveness of this integrated strategy for the interruption of schistosomiasis transmission remains unknown in the mountainous and hilly regions of China until now.This longitudinal study aims to evaluate the effectiveness of the integrated strategy on transmission interruption of schistosomiasis in Sichuan Province from 2005 through 2014.Methods:The data regarding replacement of bovines with machines,improved sanitation,access to clean water,construction of public toilets and household latrines,snail control,chemotherapy,and health education were captured from the annual report of the schistosomiasis control programmes in Sichuan Province from 2005 to 2014,and S.japonicum infection in humans,bovines and snails were estimated to evaluate the effectiveness of the integrated strategy.Results:During the 10-year period from 2005 through 2014,a total of 536568 machines were used to replace bovines,and 3284333 household lavatories and 15523 public latrines were built.Tap water was supplied to 19116344 residents living in the endemic villages.A total of 230098 hm2 snail habitats were given molluscicide treatment,and 357233 hm2 snail habitats received environmental improvements.There were 7268138 humans and 840845 bovines given praziquantel chemotherapy.During the 10-year study period,information,education and communication(IEC)materials were provided to village officers,teachers and schoolchildren.The 10-year implementation of the integrated strategy resulted in a great reduction in S.japonicum infection in humans,bovines and snails.Since 2007,no acute infection was detected,and no schistosomiasis cases or infected bovines were identified since 2012.In addition,the snail habitats reduced by 62.39%in 2014 as compared to that in 2005,and no S.japonicum infection was identified in snails since 2007.By 2014,88.9%of the展开更多
High accuracy surface modeling (HASM) is a method which can be applied to soil property interpolation. In this paper, we present a method of HASM combined geographic information for soil property interpolation (HAS...High accuracy surface modeling (HASM) is a method which can be applied to soil property interpolation. In this paper, we present a method of HASM combined geographic information for soil property interpolation (HASM-SP) to improve the accuracy. Based on soil types, land use types and parent rocks, HASM-SP was applied to interpolate soil available P, Li, pH, alkali-hydrolyzable N, total K and Cr in a typical red soil hilly region. To evaluate the performance of HASM-SP, we compared its performance with that of ordinary kriging (OK), ordinary kriging combined geographic information (OK-Geo) and stratified kriging (SK). The results showed that the methods combined with geographic information including HASM-SP and OK-Geo obtained a lower estimation bias. HASM-SP also showed less MAEs and RMSEs when it was compared with the other three methods (OK-Geo, OK and SK). Much more details were presented in the HASM-SP maps for soil properties due to the combination of different types of geographic information which gave abrupt boundary for the spatial varia- tion of soil properties. Therefore, HASM-SP can not only reduce prediction errors but also can be accordant with the distribution of geographic information, which make the spatial simula- tion of soil property more reasonable. HASM-SP has not only enriched the theory of high accuracy surface modeling of soil property, but also provided a scientific method for the ap- plication in resource management and environment planning.展开更多
Water deficit is one of the major limiting factors in vegetation recovery and reconstruction in the semi-arid area of loess hilly regions. Leaf photosynthesis in Hippophae rhamnoides Linn., a common tree grown in this...Water deficit is one of the major limiting factors in vegetation recovery and reconstruction in the semi-arid area of loess hilly regions. Leaf photosynthesis in Hippophae rhamnoides Linn., a common tree grown in this region, decreases under water stress, but the mechanism responsible is not clear. The objective of this study was to investigate the effects of drought stress on photosynthesis and the relationship between photosynthetic variables and soil water contents to help us better understand the photophysiological characteristics of H. rhamnoides under water stress and guide cultivation in the loess hilly region. Here,gas exchange, chlorophyll fluorescence and antioxidant enzyme activity in leaves of 3-year-old saplings of H.rhamnoides grown in pots were tested under eight soil water conditions. When soil water content(RWC) was between 38.9 and 70.5 %, stomatal limitation was responsible for the reduced net photosynthetic rate(PN).When RWC was lower than 38.9 %, nonstomatal limitation was the main factor restricting PN. Moderate water stress improved the water use efficiency(WUE) of the leaf.Water stress significantly influenced fluorescence variables and the antioxidant enzyme system. When RWC was between 38.9 and 70.5 %, nonphotochemical quenching(NPQ) increased and then decreased, indicating that thermal energy dissipation was a significant photoprotection mechanism. Antioxidant enzymes were activated when RWC ranged from 48.3 to 70.5 %; under severe water stress(RWC / 38.9 %), the antioxidant enzyme system was damaged, the activity of the antioxidant enzymes declined, and membranes were damaged. In the semiarid loess hilly region, RWC between 58.6 and 70.5 % was the economic water threshold value that maintained higher WUE and PN, and the maximum soil water deficit level that could sustain H. rhamnoides was RWC of 38.9 %.展开更多
Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of ...Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of formation and development of a sliding ground fissure by the circular sliding slice method.Moreover, we established a prediction model of a sliding fissure based on a mechanical mechanism,and verified its reliability on face 52,304, an engineering example, situated at Daliuta coal mine of Shendong mining area in western China. The results show that the stress state of a mining slope is changed by its gravity and additional stress from the shallow-buried coal seam and gully terrain. The mining slope is found to be most unstable when the ratio of the down-sliding to anti-sliding force is the maximum, causing local fractures and sliding fissures. The predicted angles for the sliding fissure of face 52,304 on both sides of the slope are found to be 64.2° and 82.4°, which are in agreement with the experimental data.展开更多
Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil phys...Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic 展开更多
Current methods that utilize simple data or models to judge whether soil fertility can selfdevelop are not sufficiently rigorous. A new framework has been set up using catastrophe theory, laboratory experiment, field ...Current methods that utilize simple data or models to judge whether soil fertility can selfdevelop are not sufficiently rigorous. A new framework has been set up using catastrophe theory, laboratory experiment, field work, and 3S(Geographic information system, Global positioning system, and Remote sensing) to explore soil fertility catastrophe under ecological restoration, discriminate whether soil fertility can self-develop, and propose adjustment of ecological restoration measures in the Zhuxi watershed of Changting County, Fujian Province, China, which is a typical representative of the red soil hilly region of China. The results show that: 1) the soil fertility is obviously improved through the four ecological restoration measures, which impels soil fertility catastrophe. Among 89 soil samples, catastrophic soil samples and stable soil samples account for 26(29.21%) and 63(70.79%) of the samples, respectively. The four ecological restoration measures are listed in the order lowquality forest improvement > arbor–bush–herb mixed plantation > orchard improvement > closing measures according to the proportions of catastrophic soil samples. A typical soil sample in Bashilihe that can self-develop is selected as the criterion to judge the upper lobe and lower lobe of soil fertility in the process surface of the Cusp catastrophe model. Twenty-six(29.21%) were in the middle lobe, 10(11.24%) were in the upper lobe, and 53(70.79%) were in the lower lobe. The catastrophic direction of 26 catastrophic soil samples is to the upper lobe according to soil and water loss change as well as fieldwork. There is a significant positive correlation of Δ with soil and water loss change, and the lower soil and water loss relates to higher catastrophic probability. 2) Soil fertility self-development could be regionalized as "Soil fertility can self-develop" whose area was 12.74 km2(28.33%) distributed mainly in the leftmost and rightmost parts, "Soil fertility tends to self-develop" whose area was 11.63 km2(25.89%) distributed m展开更多
文摘The irrational land use is one of the main reasons for the soil erosion and nutrient loss in the loess hilly area of China. In this project, 4 types of typical land use structure of sustain ment for about 15 years in the loess hill slope are selected to study the effect of land use structure on the distribution of soil nutrients. From hill bottom to hill top, the patterns of land use types are:, grassland-slope farmland-forest, slope farmland-grassland-forest, terrace-grassland-forest and slope farmland-forest-grassland. By measuring the contents of the total N, total P, available N, available P and organic matter of soils, the results show that the land use structure types of slope farmland-grassland-forest and terrace-grassland-forest have a better capacity to maintain the soil nutrients.
基金supported by grants from the National Key Research and Development Program of China (SQ2018YFD080041)the Science Fund of the Education Department of Sichuan Province, China (16ZB0048)
文摘Understanding soil nutrient distributions and the factors affecting them are crucial for fertilizer management and environmental protection in vulnerable ecological regions.Based on 555 soil samples collected in 2012 in Renshou County,located in the purple soil hilly area of Sichuan Basin,China,the spatial variability of soil total nitrogen(TN),total phosphorus(TP)and total potassium(TK)was studied with geostatistical analysis and the relative roles of the affecting factors were quantified using regression analysis.The means of TN,TP and TK contents were 1.12,0.82 and 9.64 g kg^(–1),respectively.The coefficients of variation ranged from 30.56 to 38.75%and the nugget/sill ratios ranged from 0.45 to 0.61,indicating that the three soil nutrients had moderate variability and spatial dependence.Two distribution patterns were observed.TP and TK were associated with patterns of obvious spatial distribution trends while the spatial distribution of TN was characterized by higher variability.Soil group,land use type and topographic factors explained 26.5,35.6 and 8.4%of TN variability,respectively,with land use being the dominant factor.Parent material,soil group,land use type and topographic factors explained 17.5,10.7,12.0 and 5.0%of TP variability,respectively,and both parent material and land use type played important roles.Only parent material and soil type contributed to TK variability and could explain 25.1 and 13.7%of TK variability,respectively.More attention should focus on adopting reasonable land use types for the purposes of fertilizer management and consider the different roles of the affecting factors at the landscape scale in this purple soil hilly area.
基金National Basic Research Program of China, No.2007CB407207Knowledge Innovation Project of Institute of Geographic Sciences and Natural Resources Research,CAS,No.CXIOG-A04-10the support from CAS through its "One Hundred Talent" program
文摘Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on segments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm, Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation, rill cannot happen within the top 50 m, while in a year with large and intensive precipitation, rill can be formed starting even at 15 m from the top of the slope.
文摘Scientific evidence for the upper limit of farmland is proposed. Shallow gully erosion is one of erosion types distributed extensively on sloping farmland in the hilly regions of the Loess Plateau. Field observation and aerial photos interpretation, as well as laboratory experiments show that the shallow gully erosion occurring on the steeper farmland in the hilly regions of the Loess Plateau is an important factor leading to intensive erosion on slope, because of its extensive distribution and intensive runoff collection. The data on the formation, development and distribution of shallow gullies on sloping farmland indicate that critical slope gradient for shallow gully initiation ranges from 15 to 20 degrees with an average of 18.2 degrees. Therefore, it is suggested that critical slope gradient for compulsory abandonment of farmland on the hilly Loess Plateau should be kept within the critical slope gradient for shallow gully initiation to prevent shallow gully formation in order to control soil loss more effectively. But as the first step, the cultivation on the slopes with slope larger than 25 degrees where the maximum erosion occurs should be strictly forbidden.
文摘The effects of environmental factors on carbon flux were analyzed, the spatial and temporal variation of carbon flux was studied at the two heights of 23 m and 39 m with the eddy covariance technique, and the carbon budget was evaluated for evergreen coniferous plantation in the red earth hilly area during the year 2003. The results showed that photosynthetically active radiation (PAR) and soil temperature are essential factors strongly affecting the net ecosystem exchange (NEE); in the daytime, the response of NEE to PAR shows a rectangular hyperbola trend, and in the nighttime, the significant correlation was observed between soil temperature and soil respiration which was filtered using friction velocity. This ecosystem appeared as a carbon sink along the whole year of 2003, and the carbon flux showed the obvious seasonal fluctuation and diurnal variability. The seasonal peak of NEE occurred in May and June with the daily sum about 0.61-0.67 mg · CO2 · m-2 · s-1. For the severe drought in the mid-summer, the daily sum was 0.40-0.44 mg · CO2 · m-2 · s-1 in July which was only 2/3 of that in the last two months. For the lasted drought of the year, the nadir of NEE happened in the winder with the daily sum about -0.29 to -0.35 mg · CO2 · m-2 · s-1. The sink intensity of the ecosystem was about -0.553 to -0.645 kg · Cm-2 per year in 2003.
文摘Plant biomass and biodiversity, element accumulation and return, water loss and soil erosion, and changesin soil properties were studied for up to 10 years after conversion of sparse tree-shrubby grass land into thefollowing four land use patterns: masson pine (Pznvs massonzana Lamb.) land, beautiful sweetgum (Ltq-uidambar fomosana Hance) land, vegetation reservation land, and artificial mowing land. The annualbiomass production of the masson pine land was 5060 kg ha ̄-1 being 4.9, 2.1, and 6.0 times that of the beau-tiful sweetgum land, the vegetation reservation land, and the artificial mowing land, respectively. Comparedwith the background values, the number of plant species for the vegetation reservation land increased by 10species after 10 years of land utilization, while for the masson pine and the beautiful sweetgum decreased by4, and for the artificial mowing land by 9. For masson pine land, total amount of N, P, K, Ca, and Mg neededfor producing 1000 kg dry matter was only 3.5 kg, annual element return through litter was 22 kg ha ̄-1, bothof which were much lower than those of the other patterns. Vegetation reservation was an effective measureto conserve soil and water and improve soil fertility in the red soil hilly region. Artificial mowing arousedserious degradation of vegetation and soil. Some measures and suggestions for management and exploitationof the red soil hilly region such as masson pine planting, closing hills for afforestation, and stereo-agricultureon one hill are proposed.
基金Supported by CAS(Grant No.KZCX3-SW 422)NNSF(Grant Nos.90502002,40271015)+1 种基金ISWC(B105101-109)IAEA(12322/RO)
文摘According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.
基金Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05060300)
文摘Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the
基金This study was supported by the grant from the China UK Global Health Support Programme(grant no.GHSPOP101).
文摘Background:Schistosomiasis remains a major public health concern in China.Since 2004,an integrated strategy was developed to control the transmission of Schistosoma japonicum in China.However,the long-term effectiveness of this integrated strategy for the interruption of schistosomiasis transmission remains unknown in the mountainous and hilly regions of China until now.This longitudinal study aims to evaluate the effectiveness of the integrated strategy on transmission interruption of schistosomiasis in Sichuan Province from 2005 through 2014.Methods:The data regarding replacement of bovines with machines,improved sanitation,access to clean water,construction of public toilets and household latrines,snail control,chemotherapy,and health education were captured from the annual report of the schistosomiasis control programmes in Sichuan Province from 2005 to 2014,and S.japonicum infection in humans,bovines and snails were estimated to evaluate the effectiveness of the integrated strategy.Results:During the 10-year period from 2005 through 2014,a total of 536568 machines were used to replace bovines,and 3284333 household lavatories and 15523 public latrines were built.Tap water was supplied to 19116344 residents living in the endemic villages.A total of 230098 hm2 snail habitats were given molluscicide treatment,and 357233 hm2 snail habitats received environmental improvements.There were 7268138 humans and 840845 bovines given praziquantel chemotherapy.During the 10-year study period,information,education and communication(IEC)materials were provided to village officers,teachers and schoolchildren.The 10-year implementation of the integrated strategy resulted in a great reduction in S.japonicum infection in humans,bovines and snails.Since 2007,no acute infection was detected,and no schistosomiasis cases or infected bovines were identified since 2012.In addition,the snail habitats reduced by 62.39%in 2014 as compared to that in 2005,and no S.japonicum infection was identified in snails since 2007.By 2014,88.9%of the
基金Foundation: National Natural Science Foundation of China, No.41001057 China National Science Fund for Distinguished Young Scholars, No.40825003 Project Supported by State Key Laboratory of Earth Surface Processes and Resource Ecology, No.2011-KF-06
文摘High accuracy surface modeling (HASM) is a method which can be applied to soil property interpolation. In this paper, we present a method of HASM combined geographic information for soil property interpolation (HASM-SP) to improve the accuracy. Based on soil types, land use types and parent rocks, HASM-SP was applied to interpolate soil available P, Li, pH, alkali-hydrolyzable N, total K and Cr in a typical red soil hilly region. To evaluate the performance of HASM-SP, we compared its performance with that of ordinary kriging (OK), ordinary kriging combined geographic information (OK-Geo) and stratified kriging (SK). The results showed that the methods combined with geographic information including HASM-SP and OK-Geo obtained a lower estimation bias. HASM-SP also showed less MAEs and RMSEs when it was compared with the other three methods (OK-Geo, OK and SK). Much more details were presented in the HASM-SP maps for soil properties due to the combination of different types of geographic information which gave abrupt boundary for the spatial varia- tion of soil properties. Therefore, HASM-SP can not only reduce prediction errors but also can be accordant with the distribution of geographic information, which make the spatial simula- tion of soil property more reasonable. HASM-SP has not only enriched the theory of high accuracy surface modeling of soil property, but also provided a scientific method for the ap- plication in resource management and environment planning.
基金supported by Monitoring and Evaluation Report on Shandong Ecological Afforestation Program(SEAP)of The World Bank Loan(No.SEAP-JC-2)
文摘Water deficit is one of the major limiting factors in vegetation recovery and reconstruction in the semi-arid area of loess hilly regions. Leaf photosynthesis in Hippophae rhamnoides Linn., a common tree grown in this region, decreases under water stress, but the mechanism responsible is not clear. The objective of this study was to investigate the effects of drought stress on photosynthesis and the relationship between photosynthetic variables and soil water contents to help us better understand the photophysiological characteristics of H. rhamnoides under water stress and guide cultivation in the loess hilly region. Here,gas exchange, chlorophyll fluorescence and antioxidant enzyme activity in leaves of 3-year-old saplings of H.rhamnoides grown in pots were tested under eight soil water conditions. When soil water content(RWC) was between 38.9 and 70.5 %, stomatal limitation was responsible for the reduced net photosynthetic rate(PN).When RWC was lower than 38.9 %, nonstomatal limitation was the main factor restricting PN. Moderate water stress improved the water use efficiency(WUE) of the leaf.Water stress significantly influenced fluorescence variables and the antioxidant enzyme system. When RWC was between 38.9 and 70.5 %, nonphotochemical quenching(NPQ) increased and then decreased, indicating that thermal energy dissipation was a significant photoprotection mechanism. Antioxidant enzymes were activated when RWC ranged from 48.3 to 70.5 %; under severe water stress(RWC / 38.9 %), the antioxidant enzyme system was damaged, the activity of the antioxidant enzymes declined, and membranes were damaged. In the semiarid loess hilly region, RWC between 58.6 and 70.5 % was the economic water threshold value that maintained higher WUE and PN, and the maximum soil water deficit level that could sustain H. rhamnoides was RWC of 38.9 %.
基金Projects funded by the National Key Basic Research Development Program(No.2013CB227904)the National Natural Science Foundation of China(No.41272389)+1 种基金China Postdoctoral Science Foundation(No.2014M561931)the Natural Science Foundation of Hebei Province(No.D2014402007)
文摘Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of formation and development of a sliding ground fissure by the circular sliding slice method.Moreover, we established a prediction model of a sliding fissure based on a mechanical mechanism,and verified its reliability on face 52,304, an engineering example, situated at Daliuta coal mine of Shendong mining area in western China. The results show that the stress state of a mining slope is changed by its gravity and additional stress from the shallow-buried coal seam and gully terrain. The mining slope is found to be most unstable when the ratio of the down-sliding to anti-sliding force is the maximum, causing local fractures and sliding fissures. The predicted angles for the sliding fissure of face 52,304 on both sides of the slope are found to be 64.2° and 82.4°, which are in agreement with the experimental data.
基金financially supported by the National Natural Science Foundation of China (41630858)
文摘Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic
基金funded by the National Natural Science Foundation of China(Grant Nos.41371512,41001170)
文摘Current methods that utilize simple data or models to judge whether soil fertility can selfdevelop are not sufficiently rigorous. A new framework has been set up using catastrophe theory, laboratory experiment, field work, and 3S(Geographic information system, Global positioning system, and Remote sensing) to explore soil fertility catastrophe under ecological restoration, discriminate whether soil fertility can self-develop, and propose adjustment of ecological restoration measures in the Zhuxi watershed of Changting County, Fujian Province, China, which is a typical representative of the red soil hilly region of China. The results show that: 1) the soil fertility is obviously improved through the four ecological restoration measures, which impels soil fertility catastrophe. Among 89 soil samples, catastrophic soil samples and stable soil samples account for 26(29.21%) and 63(70.79%) of the samples, respectively. The four ecological restoration measures are listed in the order lowquality forest improvement > arbor–bush–herb mixed plantation > orchard improvement > closing measures according to the proportions of catastrophic soil samples. A typical soil sample in Bashilihe that can self-develop is selected as the criterion to judge the upper lobe and lower lobe of soil fertility in the process surface of the Cusp catastrophe model. Twenty-six(29.21%) were in the middle lobe, 10(11.24%) were in the upper lobe, and 53(70.79%) were in the lower lobe. The catastrophic direction of 26 catastrophic soil samples is to the upper lobe according to soil and water loss change as well as fieldwork. There is a significant positive correlation of Δ with soil and water loss change, and the lower soil and water loss relates to higher catastrophic probability. 2) Soil fertility self-development could be regionalized as "Soil fertility can self-develop" whose area was 12.74 km2(28.33%) distributed mainly in the leftmost and rightmost parts, "Soil fertility tends to self-develop" whose area was 11.63 km2(25.89%) distributed m