Marine structures, such as Groynes, Sea walls and Detached Breakwaters, are constructed in coast of area to improve coast stability against bed erosions due to changing wave and current pattern. Marine mechanisms and ...Marine structures, such as Groynes, Sea walls and Detached Breakwaters, are constructed in coast of area to improve coast stability against bed erosions due to changing wave and current pattern. Marine mechanisms and interaction with the hydraulic structures need to be intensively studied. Groynes are one of the most prominent structures that are used in shore protection and littoral sediment. The main hydraulic function of the groyne is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative aesthetic impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood. The objective of this study is to predict sediment transport in the vicinity of submerged groyne and comparison with non-submerged groyne focusing on a part of the coast at Dahane Sar Sefidrood, Guilan Province, Iran, where serious coast erosion has been occurred. The simulations were designed using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groyne. The results of the proposed model are compared with experimental data to determine the shape of the coast. The results of predicted beach deformation show that when submerged groyne construct in the beach, sediment accumulation will be slightly less than the non-submerged groyne; because transfer coefficient for the submerged groyne is more than non-submerged groyne. This result will cause more sediment passing on submerged groyne. Finally, the result of the present study show that using submerged groyne is an efficient way to control the sediment and beach erosion without causing severe environmental effect on the coast.展开更多
The Longfengtou Beach in the Haitan Bay, located in Fujian Province of China and facing the Haitan Strait, has been suffering severe erosion due to the construction of seawalls. A simple beach nourishment project impl...The Longfengtou Beach in the Haitan Bay, located in Fujian Province of China and facing the Haitan Strait, has been suffering severe erosion due to the construction of seawalls. A simple beach nourishment project implemented has not achieved the anticipated beach restoration. Thus a practical solution has to rely on a combination with near-shore marine structures. In this study, a 2-D calibrated flow model is set up to investigate the effects of three different layouts of near-shore marine structures on the tidal current. It is shown that the breakwaters situated in both the north and south ends play a vital part in the protection against erosion. The offshore breakwaters can serve as a barrier to obstruct the current circulation then reduce the current velocity. The groyne linking the Guimo islet and the coast significantly reduces the south-to-north water exchange through the channel and redirects the current direction nearly perpendicular to the north breakwater, which cuts off the longshore transport that may have a negative influence on the beach, especially, the northern part. It is also noted that the monsoon at the site with different directions increases the current velocity. In general, proper layouts of marine structures can reduce the current velocity thus lead to less intense sand transport near the beach.展开更多
This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel w...This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water, depth by about 75%, 125%, and 175% of its original value in eases of one-side floodplain groyne(s) with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width,展开更多
The field formed by groyne has the function of aquatic habitats for the underwater biology. The characteristic of groyne field occurring around downstream of groyne depends on groyne type and shape. Thus to maximize t...The field formed by groyne has the function of aquatic habitats for the underwater biology. The characteristic of groyne field occurring around downstream of groyne depends on groyne type and shape. Thus to maximize the function of groyne, it needs to understand the flow characteristic around groyne. In this study, experiment model test was conducted in recirculation zone located in downstream of groyne. Groyne types for experiment are three: permeable, impermeable and inclined crest groyne. LSPIV (Large Scale Particle Image Velocimetry) is used to measure flow field around the groyne and it revealed flow characteristic in recirculation zone at each case. In order to estimate the aquatic habitats of groyne fields, critical swimming speed of major fleshwater fish in Korea was compared with the variation of velocity distribution in groyne fields. From the results, the rate of velocity decreases in groyne fields, V/Vapp were measured to be 0 to 0.5 and the results can be fundamental data which are used to estimate the aquatic habitable function of groyne.展开更多
A groyne zone formed by installing groynes functions as habitat or shelter for aquatic organisms during a flood. Since flow characteristics over a groyne zone are affected directly by groynes, understanding flow patte...A groyne zone formed by installing groynes functions as habitat or shelter for aquatic organisms during a flood. Since flow characteristics over a groyne zone are affected directly by groynes, understanding flow patterns due to shapes and types of groynes is of importance for designing groynes. In order to use groynes as an eco-friendly river structure, the ecological effects should also be considered at the design stage. In Korea, the ecological effects of groynes have rarely been examined or included for the actual design. In this study, a set of experiments were carried out to investigate flow pattern changes depending on different types of groynes. Based on the flow characteristics in the groyne zone, the scales of habitats and shelters by the groyne types were estimated. In addition, to test the applicability of a habitat evaluation model to the ecological design of groynes, River2D was used for a virtual river. For assessment of the groyne’s function of ecological habitat, the suitability index of a habitat for pale chub, one of the popular fishes in Korea, was used and the habitat areas by the groyne types were analyzed. The flow changes depending on the groyne types simulated by River2D show the applicability for the simulation of an ecological habitat to the groyne design.展开更多
The refraction groyne is a complex structure consisted with groyne and groyne’s arm. This study conducted a experiment on the flow influences around the refraction groyne due to changes in the arm angle (θ) and leng...The refraction groyne is a complex structure consisted with groyne and groyne’s arm. This study conducted a experiment on the flow influences around the refraction groyne due to changes in the arm angle (θ) and length (AL). Results of experiment were analyzed on the impacts of the refraction groyne according to the projection length (L’). Velocity increase in main channel occurred greater the upward groynes than downward groynes. The vortices occurring at recirculation area of the upward and downward refraction groynes were formed in different shapes. The thalweg height did not have great impact vis-a-vis the extended arm length ratio and refraction angle change. The length of the recirculation area showed a gradual uptrend as the arm length of the groyne increased. Such area was formed at the range of 29% - 47%. For the length of the recirculation area, it was observed to be 10.2 - 14.7 times (URG), 8.4 - 12.7 times (DRG), and 10.6 - 13.8 times (right angle groyne) the projection length (L’) incensement.展开更多
A hydraulic model test for ¬-type groynes (with “¬” shape) was conducted to analyze the flow characteristics around these groynes. The results of the model tests are expected to be used as fundamental information ...A hydraulic model test for ¬-type groynes (with “¬” shape) was conducted to analyze the flow characteristics around these groynes. The results of the model tests are expected to be used as fundamental information in designing the ¬-type groyne constructed in the field. Main hydraulic factors such as velocity and thalweg line changes in the main channel and separation area were analyzed in this study. The thalweg line is a stream line where the maximum velocity occurs, whereas the separation area is the boundary between the main flow and the recirculation zone. Model tests with 5 different arm lengths of the ¬-type groynes were conducted by changing the velocity. The LSPIV (Large-Scale Particle Image Velocimetry) technique was used to measure and analyze flow variation around the ¬-type groynes. The velocity in the main channel measured to be increased by 1.5 times. The velocity variation on groyne arm length is little. The width of the thalweg lines (TCL) was changed to 55 - 57% of the channel width. The Froude number did not affect the thalweg line (TCL) and separation line (Sh) changes, however.展开更多
The groyne has been used widely in bank protection and river regulation. The plane layout and structural style of groyne are closely related to the stability of the groyne itself and the effect of bank protection. In ...The groyne has been used widely in bank protection and river regulation. The plane layout and structural style of groyne are closely related to the stability of the groyne itself and the effect of bank protection. In this paper, based on the preliminary summary of the design of bank protection in the bore surging area of Qiantang River, some problems regarding the structure of groyne are pointed out and an improved plan is put forward. Site experiment was carried out combined with an emergency repair. The results of the experiment indicate that the improved project is reliable and successful.展开更多
The hydrodynamics in a straight open channel with a multiple-embayment groyne field was investigated using the detached-eddy simulation(DES).A series of short groynes were included on a 1:3 side slope of the channel.T...The hydrodynamics in a straight open channel with a multiple-embayment groyne field was investigated using the detached-eddy simulation(DES).A series of short groynes were included on a 1:3 side slope of the channel.This work focuses on the turbulent coherent structures around groynes on an uneven bottom.Flows around groyne fields are characterized by massive separation and highly unsteady vortices.DES can capture a wide spectrum of eddies at a lower computational cost than the large eddy simulation(LES)or direct numerical simulation(DNS).In the present work,a zonal DES model(ZDES)was used to simulate the flow around groynes.The ZDES model is a modified version of the DES designed to overcome the model-stress depletion(MSD)of the RANS/LES hybrid model.The vortex system consists of the horseshoe vortex(HV)formed at the base of the obstructions,the necklace vortex(NV)that wrapped the groyne tips near the free surface,and the shedding vortex(SV)underneath the free surface.The effects of the incident flow and local topography on the vortex evolution were investigated by analyzing the mean flow structures and the instantaneous turbulent flow fields.Some important vortices cannot be captured because of the averaging process,while some flow structures cannot be observed in the instantaneous flow.The mean flow is only a reflection of the averaging process when complex vortices are present.展开更多
文摘Marine structures, such as Groynes, Sea walls and Detached Breakwaters, are constructed in coast of area to improve coast stability against bed erosions due to changing wave and current pattern. Marine mechanisms and interaction with the hydraulic structures need to be intensively studied. Groynes are one of the most prominent structures that are used in shore protection and littoral sediment. The main hydraulic function of the groyne is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative aesthetic impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood. The objective of this study is to predict sediment transport in the vicinity of submerged groyne and comparison with non-submerged groyne focusing on a part of the coast at Dahane Sar Sefidrood, Guilan Province, Iran, where serious coast erosion has been occurred. The simulations were designed using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groyne. The results of the proposed model are compared with experimental data to determine the shape of the coast. The results of predicted beach deformation show that when submerged groyne construct in the beach, sediment accumulation will be slightly less than the non-submerged groyne; because transfer coefficient for the submerged groyne is more than non-submerged groyne. This result will cause more sediment passing on submerged groyne. Finally, the result of the present study show that using submerged groyne is an efficient way to control the sediment and beach erosion without causing severe environmental effect on the coast.
基金supported by the Marine Public Welfare Pro-gram of China(Grant No.201305003)
文摘The Longfengtou Beach in the Haitan Bay, located in Fujian Province of China and facing the Haitan Strait, has been suffering severe erosion due to the construction of seawalls. A simple beach nourishment project implemented has not achieved the anticipated beach restoration. Thus a practical solution has to rely on a combination with near-shore marine structures. In this study, a 2-D calibrated flow model is set up to investigate the effects of three different layouts of near-shore marine structures on the tidal current. It is shown that the breakwaters situated in both the north and south ends play a vital part in the protection against erosion. The offshore breakwaters can serve as a barrier to obstruct the current circulation then reduce the current velocity. The groyne linking the Guimo islet and the coast significantly reduces the south-to-north water exchange through the channel and redirects the current direction nearly perpendicular to the north breakwater, which cuts off the longshore transport that may have a negative influence on the beach, especially, the northern part. It is also noted that the monsoon at the site with different directions increases the current velocity. In general, proper layouts of marine structures can reduce the current velocity thus lead to less intense sand transport near the beach.
文摘This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water, depth by about 75%, 125%, and 175% of its original value in eases of one-side floodplain groyne(s) with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width,
文摘The field formed by groyne has the function of aquatic habitats for the underwater biology. The characteristic of groyne field occurring around downstream of groyne depends on groyne type and shape. Thus to maximize the function of groyne, it needs to understand the flow characteristic around groyne. In this study, experiment model test was conducted in recirculation zone located in downstream of groyne. Groyne types for experiment are three: permeable, impermeable and inclined crest groyne. LSPIV (Large Scale Particle Image Velocimetry) is used to measure flow field around the groyne and it revealed flow characteristic in recirculation zone at each case. In order to estimate the aquatic habitats of groyne fields, critical swimming speed of major fleshwater fish in Korea was compared with the variation of velocity distribution in groyne fields. From the results, the rate of velocity decreases in groyne fields, V/Vapp were measured to be 0 to 0.5 and the results can be fundamental data which are used to estimate the aquatic habitable function of groyne.
文摘A groyne zone formed by installing groynes functions as habitat or shelter for aquatic organisms during a flood. Since flow characteristics over a groyne zone are affected directly by groynes, understanding flow patterns due to shapes and types of groynes is of importance for designing groynes. In order to use groynes as an eco-friendly river structure, the ecological effects should also be considered at the design stage. In Korea, the ecological effects of groynes have rarely been examined or included for the actual design. In this study, a set of experiments were carried out to investigate flow pattern changes depending on different types of groynes. Based on the flow characteristics in the groyne zone, the scales of habitats and shelters by the groyne types were estimated. In addition, to test the applicability of a habitat evaluation model to the ecological design of groynes, River2D was used for a virtual river. For assessment of the groyne’s function of ecological habitat, the suitability index of a habitat for pale chub, one of the popular fishes in Korea, was used and the habitat areas by the groyne types were analyzed. The flow changes depending on the groyne types simulated by River2D show the applicability for the simulation of an ecological habitat to the groyne design.
文摘The refraction groyne is a complex structure consisted with groyne and groyne’s arm. This study conducted a experiment on the flow influences around the refraction groyne due to changes in the arm angle (θ) and length (AL). Results of experiment were analyzed on the impacts of the refraction groyne according to the projection length (L’). Velocity increase in main channel occurred greater the upward groynes than downward groynes. The vortices occurring at recirculation area of the upward and downward refraction groynes were formed in different shapes. The thalweg height did not have great impact vis-a-vis the extended arm length ratio and refraction angle change. The length of the recirculation area showed a gradual uptrend as the arm length of the groyne increased. Such area was formed at the range of 29% - 47%. For the length of the recirculation area, it was observed to be 10.2 - 14.7 times (URG), 8.4 - 12.7 times (DRG), and 10.6 - 13.8 times (right angle groyne) the projection length (L’) incensement.
文摘A hydraulic model test for ¬-type groynes (with “¬” shape) was conducted to analyze the flow characteristics around these groynes. The results of the model tests are expected to be used as fundamental information in designing the ¬-type groyne constructed in the field. Main hydraulic factors such as velocity and thalweg line changes in the main channel and separation area were analyzed in this study. The thalweg line is a stream line where the maximum velocity occurs, whereas the separation area is the boundary between the main flow and the recirculation zone. Model tests with 5 different arm lengths of the ¬-type groynes were conducted by changing the velocity. The LSPIV (Large-Scale Particle Image Velocimetry) technique was used to measure and analyze flow variation around the ¬-type groynes. The velocity in the main channel measured to be increased by 1.5 times. The velocity variation on groyne arm length is little. The width of the thalweg lines (TCL) was changed to 55 - 57% of the channel width. The Froude number did not affect the thalweg line (TCL) and separation line (Sh) changes, however.
文摘The groyne has been used widely in bank protection and river regulation. The plane layout and structural style of groyne are closely related to the stability of the groyne itself and the effect of bank protection. In this paper, based on the preliminary summary of the design of bank protection in the bore surging area of Qiantang River, some problems regarding the structure of groyne are pointed out and an improved plan is put forward. Site experiment was carried out combined with an emergency repair. The results of the experiment indicate that the improved project is reliable and successful.
基金Project supported by the National Natural Science Foundation of China(Grant No.11572196)the Shanghai Science and Technology Committee(Grant No.17230741200).
文摘The hydrodynamics in a straight open channel with a multiple-embayment groyne field was investigated using the detached-eddy simulation(DES).A series of short groynes were included on a 1:3 side slope of the channel.This work focuses on the turbulent coherent structures around groynes on an uneven bottom.Flows around groyne fields are characterized by massive separation and highly unsteady vortices.DES can capture a wide spectrum of eddies at a lower computational cost than the large eddy simulation(LES)or direct numerical simulation(DNS).In the present work,a zonal DES model(ZDES)was used to simulate the flow around groynes.The ZDES model is a modified version of the DES designed to overcome the model-stress depletion(MSD)of the RANS/LES hybrid model.The vortex system consists of the horseshoe vortex(HV)formed at the base of the obstructions,the necklace vortex(NV)that wrapped the groyne tips near the free surface,and the shedding vortex(SV)underneath the free surface.The effects of the incident flow and local topography on the vortex evolution were investigated by analyzing the mean flow structures and the instantaneous turbulent flow fields.Some important vortices cannot be captured because of the averaging process,while some flow structures cannot be observed in the instantaneous flow.The mean flow is only a reflection of the averaging process when complex vortices are present.