Jinshan gold deposit is located in northeastern Jiangxi,South China,which is related to the ductile shear zone.It has a gold reserve of more than 200 tons,with 80%of gold occurring in pyrite. The LREE of gold-bearing ...Jinshan gold deposit is located in northeastern Jiangxi,South China,which is related to the ductile shear zone.It has a gold reserve of more than 200 tons,with 80%of gold occurring in pyrite. The LREE of gold-bearing pyrite is as higher as 171.664 ppm on average,with relatively higher light rare earth elements(LREE;159.556 ppm) and lower HREE(12.108 ppm).TheΣLREE/ΣHREE ratio is 12.612 and(La/Yb)_N is 11.765.These indicate that pyrite is rich in LREE.The(La/Sm)_N ratio is 3.758 and that of(Gd/Yb)_N is 1.695.These are obvious LREE fractionations.The rare earth element(REE) distribution patterns show obvious Eu anomaly with averageδEu values of 0.664,andδCe anomalies of 1.044.REE characteristics are similar to those of wall rocks(regional metamorphic rocks),but different from those of the Dexing granodiorite porphyry and Damaoshan biotite granite.These features indicate that the ore-forming materials in the Jinshan gold deposit derived from the wall rocks, and the ore-forming fluids derived from metamorphic water.The Co/Ni ratio(average value 0.38) of pyrite suggests that the Jinshan gold deposit formed under a medium-low temperature.It is inferred from the values of high-field strength elements,LREE,Hf/Sm,Nb/La,and Th/La of the pyrite that the ore-forming fluids of the Jinshan gold deposit derived from metamorphic water with Cl〉F.展开更多
Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,a...Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,and in combination with other research findings of previous researchers in this area,the authors conclude as follows:Abundances of the main ore-forming elements Te,Bi,As,Se,Au,and Ag are not high in the regional geological background,generally lower or close to their respective crustal Clark values,but almost all altered country rocks contain high levels of ore-forming elements.This indicates that the deposit’s ore-forming elements do not come from the country rocks.This also indicates that the geological thermal events that cause alteration and mineralization originate from depths and may be related to mantle plumes.Considering the distribution pattern of these ore-forming elements in the ore bodies’hanging wall and footwall,the metallogenic mechanism may be as follows:Mineralization is not achieved through lateral secretion in the horizontal or near horizontal direction,but rather through the upward movement and emplacement of deep ore-forming elements driven by geological processes such as mantle plumes.In addition,the migration of deep ore-forming elements is not achieved through dispersed infiltration between overlying rock particles,but through non widespread concentrated penetrating channels.This type of channel is likely to be the expansion structures where faults from different directions intersect,or where linear faults intersect with circular structures.展开更多
The new results of geologic-structural, petrographic and mineralogic-geochemical researches of Mykert-Sanzheevka ore field—the Uda-Vitim mineragenic zone South-West ending of West Transbaikalia are given. Its main or...The new results of geologic-structural, petrographic and mineralogic-geochemical researches of Mykert-Sanzheevka ore field—the Uda-Vitim mineragenic zone South-West ending of West Transbaikalia are given. Its main ore-controlling structure, represented by losange, consisting of rhombohedral and tetrahedral blocks-duplexes mosaic clusters, which are separated by narrow tectonic sutures, is specified. It is clarified that polycomponent ores clusters are confined with these small-block sutures, made by subvolcanic dykes of shoshonite-latite volcano-plutonic association (233 - 188 million years), apodyke dynamometamorphites (breccias, cataclasite, mylonites) and also mechanometasomatites. Four stages of the dynamometamorphites formation characterized by different species compositions of ore minerals appeared as a result of mechanochemical reactions are determined. A carbonyl model of mineral microaggregates formation with films containing noble metal nanoparticles is proposed. Ore-forming system features of Mykert-Sanzheevka field are considered.展开更多
基金supported by the National Natural Science Foundation of China(No. 40373025)
文摘Jinshan gold deposit is located in northeastern Jiangxi,South China,which is related to the ductile shear zone.It has a gold reserve of more than 200 tons,with 80%of gold occurring in pyrite. The LREE of gold-bearing pyrite is as higher as 171.664 ppm on average,with relatively higher light rare earth elements(LREE;159.556 ppm) and lower HREE(12.108 ppm).TheΣLREE/ΣHREE ratio is 12.612 and(La/Yb)_N is 11.765.These indicate that pyrite is rich in LREE.The(La/Sm)_N ratio is 3.758 and that of(Gd/Yb)_N is 1.695.These are obvious LREE fractionations.The rare earth element(REE) distribution patterns show obvious Eu anomaly with averageδEu values of 0.664,andδCe anomalies of 1.044.REE characteristics are similar to those of wall rocks(regional metamorphic rocks),but different from those of the Dexing granodiorite porphyry and Damaoshan biotite granite.These features indicate that the ore-forming materials in the Jinshan gold deposit derived from the wall rocks, and the ore-forming fluids derived from metamorphic water.The Co/Ni ratio(average value 0.38) of pyrite suggests that the Jinshan gold deposit formed under a medium-low temperature.It is inferred from the values of high-field strength elements,LREE,Hf/Sm,Nb/La,and Th/La of the pyrite that the ore-forming fluids of the Jinshan gold deposit derived from metamorphic water with Cl〉F.
文摘Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,and in combination with other research findings of previous researchers in this area,the authors conclude as follows:Abundances of the main ore-forming elements Te,Bi,As,Se,Au,and Ag are not high in the regional geological background,generally lower or close to their respective crustal Clark values,but almost all altered country rocks contain high levels of ore-forming elements.This indicates that the deposit’s ore-forming elements do not come from the country rocks.This also indicates that the geological thermal events that cause alteration and mineralization originate from depths and may be related to mantle plumes.Considering the distribution pattern of these ore-forming elements in the ore bodies’hanging wall and footwall,the metallogenic mechanism may be as follows:Mineralization is not achieved through lateral secretion in the horizontal or near horizontal direction,but rather through the upward movement and emplacement of deep ore-forming elements driven by geological processes such as mantle plumes.In addition,the migration of deep ore-forming elements is not achieved through dispersed infiltration between overlying rock particles,but through non widespread concentrated penetrating channels.This type of channel is likely to be the expansion structures where faults from different directions intersect,or where linear faults intersect with circular structures.
文摘The new results of geologic-structural, petrographic and mineralogic-geochemical researches of Mykert-Sanzheevka ore field—the Uda-Vitim mineragenic zone South-West ending of West Transbaikalia are given. Its main ore-controlling structure, represented by losange, consisting of rhombohedral and tetrahedral blocks-duplexes mosaic clusters, which are separated by narrow tectonic sutures, is specified. It is clarified that polycomponent ores clusters are confined with these small-block sutures, made by subvolcanic dykes of shoshonite-latite volcano-plutonic association (233 - 188 million years), apodyke dynamometamorphites (breccias, cataclasite, mylonites) and also mechanometasomatites. Four stages of the dynamometamorphites formation characterized by different species compositions of ore minerals appeared as a result of mechanochemical reactions are determined. A carbonyl model of mineral microaggregates formation with films containing noble metal nanoparticles is proposed. Ore-forming system features of Mykert-Sanzheevka field are considered.