To date, many studies related to robots have been performed around the world. Many of these studies have assumed operation at locations where entry is difficult, such as disaster sites, and have focused on various ter...To date, many studies related to robots have been performed around the world. Many of these studies have assumed operation at locations where entry is difficult, such as disaster sites, and have focused on various terrestrial robots, such as snake-like, humanoid, spider-type, and wheeled units. Another area of active research in recent years has been aerial robots with small helicopters for operation indoors and outdoors. However,less research has been performed on robots that operate both on the ground and in the air. Accordingly, in this paper, we propose a hybrid aerial/terrestrial robot system. The proposed robot system was developed by equipping a quadcopter with a mechanism for ground movement. It does not use power dedicated to ground movement, and instead uses the flight mechanism of the quadcopter to achieve ground movement as well. Furthermore, we addressed the issue of obstacle avoidance as part of studies on autonomous control. Thus, we found that autonomous control of ground movement and flight was possible for the hybrid aerial/terrestrial robot system, as was autonomous obstacle avoidance by flight when an obstacle appeared during ground movement.展开更多
In modern low-altitude terrain-following guidance, a constructing method of the digital surface model (DSM) is presented in the paper to reduce the threat to flying vehicles of tall surface features for safe flight. T...In modern low-altitude terrain-following guidance, a constructing method of the digital surface model (DSM) is presented in the paper to reduce the threat to flying vehicles of tall surface features for safe flight. The relationship between an isolated obstacle size and the intervals of vertical- and cross-section in the DSM model is established. The definition and classification of isolated obstacles are proposed, and a method for determining such isolated obstacles in the DSM model is given. The simulation of a typical urban district shows that when the vertical- and cross-section DSM intervals are between 3 m and 25 m, the threat to terrain-following flight at low-altitude is reduced greatly, and the amount of data required by the DSM model for monitoring in real time a flying vehicle is also smaller. Experiments show that the optimal results are for an interval of 12.5 m in the vertical- and cross-sections in the DSM model, with a 1:10 000 DSM scale grade.展开更多
In modern terrain-following guidance it is an important index for flight vehicle to cruise about safely and normally. On the basis of a constructing method of digital surface model (DSM), the definition, classificatio...In modern terrain-following guidance it is an important index for flight vehicle to cruise about safely and normally. On the basis of a constructing method of digital surface model (DSM), the definition, classification and scale analysis of an isolated obstacle threatening flight safety of terrain-following guidance are made. When the interval of vertical-and cross-sections on DSM is 12. 5 m, the proportion of isolated obstacles to the data amount of DSM model to be loaded is optimal. The main factors influencing the lowest flying height in terrain-following guidance are analyzed, and a primary safe criterion of the lowest flying height over DSM model is proposed. According to their test errors, the lowest flying height over 1:10 000 DSM model can reach 40. 5 m^45. 0 m in terrain-following guidance. It is shown from the simulation results of a typical urban district that the proposed models and methods are reasonable and feasible.展开更多
We investigate a distributed game strategy for unmanned aerial vehicle(UAV)formations with external disturbances and obstacles.The strategy is based on a distributed model predictive control(MPC)framework and Levy fli...We investigate a distributed game strategy for unmanned aerial vehicle(UAV)formations with external disturbances and obstacles.The strategy is based on a distributed model predictive control(MPC)framework and Levy flight based pigeon inspired optimization(LFPIO).First,we propose a non-singular fast terminal sliding mode observer(NFTSMO)to estimate the influence of a disturbance,and prove that the observer converges in fixed time using a Lyapunov function.Second,we design an obstacle avoidance strategy based on topology reconstruction,by which the UAV can save energy and safely pass obstacles.Third,we establish a distributed MPC framework where each UAV exchanges messages only with its neighbors.Further,the cost function of each UAV is designed,by which the UAV formation problem is transformed into a game problem.Finally,we develop LFPIO and use it to solve the Nash equilibrium.Numerical simulations are conducted,and the efficiency of LFPIO based distributed MPC is verified through comparative simulations.展开更多
无人飞行器因其结构简单、操作便捷等优点而在生活中有广泛的应用,因此对无人飞行器的结构、原理以及飞行动作进行探讨具有较好的现实意义。四旋翼飞行器作为小型无人飞行器的代表,拥有较为简单的结构和相对优秀的平衡能力,故论文对四...无人飞行器因其结构简单、操作便捷等优点而在生活中有广泛的应用,因此对无人飞行器的结构、原理以及飞行动作进行探讨具有较好的现实意义。四旋翼飞行器作为小型无人飞行器的代表,拥有较为简单的结构和相对优秀的平衡能力,故论文对四旋翼飞行器的结构、原理以及飞行动作进行详细探讨。特别地,论文还从理论上对四旋翼飞行器的飞行动作进行了深入的受力分析。基于以上分析,论文对arduino芯片与简单四旋翼飞行器的融合方法进行研究,并基于arduino MEGA 2560芯片进行避障功能扩展。展开更多
文摘To date, many studies related to robots have been performed around the world. Many of these studies have assumed operation at locations where entry is difficult, such as disaster sites, and have focused on various terrestrial robots, such as snake-like, humanoid, spider-type, and wheeled units. Another area of active research in recent years has been aerial robots with small helicopters for operation indoors and outdoors. However,less research has been performed on robots that operate both on the ground and in the air. Accordingly, in this paper, we propose a hybrid aerial/terrestrial robot system. The proposed robot system was developed by equipping a quadcopter with a mechanism for ground movement. It does not use power dedicated to ground movement, and instead uses the flight mechanism of the quadcopter to achieve ground movement as well. Furthermore, we addressed the issue of obstacle avoidance as part of studies on autonomous control. Thus, we found that autonomous control of ground movement and flight was possible for the hybrid aerial/terrestrial robot system, as was autonomous obstacle avoidance by flight when an obstacle appeared during ground movement.
基金Supported by the National Natural Science Foundation of China (No. 60072009)
文摘In modern low-altitude terrain-following guidance, a constructing method of the digital surface model (DSM) is presented in the paper to reduce the threat to flying vehicles of tall surface features for safe flight. The relationship between an isolated obstacle size and the intervals of vertical- and cross-section in the DSM model is established. The definition and classification of isolated obstacles are proposed, and a method for determining such isolated obstacles in the DSM model is given. The simulation of a typical urban district shows that when the vertical- and cross-section DSM intervals are between 3 m and 25 m, the threat to terrain-following flight at low-altitude is reduced greatly, and the amount of data required by the DSM model for monitoring in real time a flying vehicle is also smaller. Experiments show that the optimal results are for an interval of 12.5 m in the vertical- and cross-sections in the DSM model, with a 1:10 000 DSM scale grade.
基金This project was supported by the National Natural Science Foundation of China (60072009).
文摘In modern terrain-following guidance it is an important index for flight vehicle to cruise about safely and normally. On the basis of a constructing method of digital surface model (DSM), the definition, classification and scale analysis of an isolated obstacle threatening flight safety of terrain-following guidance are made. When the interval of vertical-and cross-sections on DSM is 12. 5 m, the proportion of isolated obstacles to the data amount of DSM model to be loaded is optimal. The main factors influencing the lowest flying height in terrain-following guidance are analyzed, and a primary safe criterion of the lowest flying height over DSM model is proposed. According to their test errors, the lowest flying height over 1:10 000 DSM model can reach 40. 5 m^45. 0 m in terrain-following guidance. It is shown from the simulation results of a typical urban district that the proposed models and methods are reasonable and feasible.
基金Project supported by the Science and Technology Innovation 2030 Key Project of“New Generation Artificial Intelligence,”China(No.2018AAA0100803)the National Natural Science Foundation of China(Nos.T2121003,U1913602,U20B2071,91948204,and U19B2033)。
文摘We investigate a distributed game strategy for unmanned aerial vehicle(UAV)formations with external disturbances and obstacles.The strategy is based on a distributed model predictive control(MPC)framework and Levy flight based pigeon inspired optimization(LFPIO).First,we propose a non-singular fast terminal sliding mode observer(NFTSMO)to estimate the influence of a disturbance,and prove that the observer converges in fixed time using a Lyapunov function.Second,we design an obstacle avoidance strategy based on topology reconstruction,by which the UAV can save energy and safely pass obstacles.Third,we establish a distributed MPC framework where each UAV exchanges messages only with its neighbors.Further,the cost function of each UAV is designed,by which the UAV formation problem is transformed into a game problem.Finally,we develop LFPIO and use it to solve the Nash equilibrium.Numerical simulations are conducted,and the efficiency of LFPIO based distributed MPC is verified through comparative simulations.
文摘无人飞行器因其结构简单、操作便捷等优点而在生活中有广泛的应用,因此对无人飞行器的结构、原理以及飞行动作进行探讨具有较好的现实意义。四旋翼飞行器作为小型无人飞行器的代表,拥有较为简单的结构和相对优秀的平衡能力,故论文对四旋翼飞行器的结构、原理以及飞行动作进行详细探讨。特别地,论文还从理论上对四旋翼飞行器的飞行动作进行了深入的受力分析。基于以上分析,论文对arduino芯片与简单四旋翼飞行器的融合方法进行研究,并基于arduino MEGA 2560芯片进行避障功能扩展。