In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any high...In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any higher dimensions respectively. These elements are all proved to be convergent for a model biharmonic equation in n dimensions.展开更多
Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a problem of the in...Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a problem of the initial boundary values for a system of 3-dimensional nonlinear parabolic partial differential equations, one being the pressure flow equation and the other is the concentration convection-dispersion equation of the salt contained. For a generic case of a 3-dimensional bounded region, a backward-difference time-stepping scheme is defined. It approximates the pressure by the standard Galerkin procedure and the concentration by a Galerkin method of charederistics, where calculus of variations, theory of prior estimates and techniques are made use of Optimal order estimates in H1 norm are derived for the errors in the approximate solution.展开更多
The design of mixed finite element methods in linear elasticity with symmetric stress approximations has been a longstanding open problem until Arnold and Winther designed the first family of mixed finite elements whe...The design of mixed finite element methods in linear elasticity with symmetric stress approximations has been a longstanding open problem until Arnold and Winther designed the first family of mixed finite elements where the discrete stress space is the space of H(div,Ω;S)-Pk+1 tensors whose divergence is a Pk-1 polynomial on each triangle for k ≥ 2. Such a two dimensional family was extended, by Arnold, Awanou and Winther, to a three dimensional family of mixed elements where the discrete stress space is the space of H(div, Ω; S)-Pk+2 tensors, whose divergence is a Pk-1 polynomial on each tetrahedron for k ≥ 2. In this paper, we are able to construct, in a unified fashion, mixed finite element methods with symmetric stress approximations on an arbitrary simplex in R^n for any space dimension. On the contrary, the discrete stress space here is the space of H(div,Ω; S)-Pk tensors, and the discrete displacement space here is the space of L^2(Ω; R^n)-Pk+1 vectors for k ≥ n+ 1. These finite element spaces are defined with respect to an arbitrary simplicial triangulation of the domain, and can be regarded as extensions to any dimension of those in two and three dimensions by Hu and Zhang.展开更多
In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is establishe...In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.展开更多
Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new model...Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.展开更多
This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and ...This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.展开更多
In this paper, in order to find a set of element orders of projective special liner group PSL(2,q) and num-bers of elements every order and order of group,we give a search algorithm and discuss complexity of the algor...In this paper, in order to find a set of element orders of projective special liner group PSL(2,q) and num-bers of elements every order and order of group,we give a search algorithm and discuss complexity of the algorithm.展开更多
In this paper, a two-scale higher-order finite element discretization scheme is proposed and analyzed for a Schroedinger equation on tensor product domains. With the scheme, the solution of the eigenvalue problem on a...In this paper, a two-scale higher-order finite element discretization scheme is proposed and analyzed for a Schroedinger equation on tensor product domains. With the scheme, the solution of the eigenvalue problem on a fine grid can be reduced to an eigenvalue problem on a much coarser grid together with some eigenvalue problems on partially fine grids. It is shown theoretically and numerically that the proposed two-scale higher-order scheme not only significantly reduces the number of degrees of freedom but also produces very accurate approximations.展开更多
In this paper,a 13-node pyramid spline element is derived by using the tetrahedron volume coordinates and the B-net method,which achieves the second order completeness in Cartesian coordinates.Some appropriate example...In this paper,a 13-node pyramid spline element is derived by using the tetrahedron volume coordinates and the B-net method,which achieves the second order completeness in Cartesian coordinates.Some appropriate examples were employed to evaluate the performance of the proposed element.The numerical results show that the spline element has much better performance compared with the isoparametric serendipity element Q20 and its degenerate pyramid element P13 especially when mesh is distorted,and it is comparable to the Lagrange element Q27.It has been demonstrated that the spline finite element method is an efficient tool for developing high accuracy elements.展开更多
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal ...A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.展开更多
The main aim of this paper is to show that the quadrilateral mesh condition RDP(N, ψ) is only sufficient but not necessary for the optimal order error estimate of the Q isoparametric element in the Hi norm.
Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a coupled system o... Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a coupled system of three dimensional nonlinear partial differential equations with initial-boundary value problems. In this paper, according to the actual conditions of molecular and three-dimensional characteristic of the problem, we construct the characteristic finite element alternating-direction schemes which can be divided into three continuous one-dimensional problems. By making use of tensor product algorithm, and priori estimation theory and techniques, the optimal order estimates in H1 norm are derived for the error in the approximate solution.展开更多
'ELEMENT orders' is one of the most fundamental concepts in group theory. It plays an impor-tant role in the research of group theory, which can be seen from the famous Burnside’s prob-lem. Some well-known gr...'ELEMENT orders' is one of the most fundamental concepts in group theory. It plays an impor-tant role in the research of group theory, which can be seen from the famous Burnside’s prob-lem. Some well-known group theory specialists, such as Neumann, Higman, Suzuki and oth-ers, have studied the groups whose element orders take the special values. In 1981 wediscussed the finite groups of all those whose elements are of prime order except identity ele-展开更多
基金The work of the first author was supported by the National Natural Science Fbundation of china(10571006)The work of the shird author was supperted by the Changjiang Professorship of the Ministry of Education of China through Peking University
文摘In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any higher dimensions respectively. These elements are all proved to be convergent for a model biharmonic equation in n dimensions.
文摘Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a problem of the initial boundary values for a system of 3-dimensional nonlinear parabolic partial differential equations, one being the pressure flow equation and the other is the concentration convection-dispersion equation of the salt contained. For a generic case of a 3-dimensional bounded region, a backward-difference time-stepping scheme is defined. It approximates the pressure by the standard Galerkin procedure and the concentration by a Galerkin method of charederistics, where calculus of variations, theory of prior estimates and techniques are made use of Optimal order estimates in H1 norm are derived for the errors in the approximate solution.
文摘The design of mixed finite element methods in linear elasticity with symmetric stress approximations has been a longstanding open problem until Arnold and Winther designed the first family of mixed finite elements where the discrete stress space is the space of H(div,Ω;S)-Pk+1 tensors whose divergence is a Pk-1 polynomial on each triangle for k ≥ 2. Such a two dimensional family was extended, by Arnold, Awanou and Winther, to a three dimensional family of mixed elements where the discrete stress space is the space of H(div, Ω; S)-Pk+2 tensors, whose divergence is a Pk-1 polynomial on each tetrahedron for k ≥ 2. In this paper, we are able to construct, in a unified fashion, mixed finite element methods with symmetric stress approximations on an arbitrary simplex in R^n for any space dimension. On the contrary, the discrete stress space here is the space of H(div,Ω; S)-Pk tensors, and the discrete displacement space here is the space of L^2(Ω; R^n)-Pk+1 vectors for k ≥ n+ 1. These finite element spaces are defined with respect to an arbitrary simplicial triangulation of the domain, and can be regarded as extensions to any dimension of those in two and three dimensions by Hu and Zhang.
基金the National Science Foundation(Grant Nos.DMS0409297,DMR0205232,CCF-0430349)US National Institute of Health-National Cancer Institute(Grant No.1R01CA125707-01A1)+2 种基金the National Natural Science Foundation of China(Grant No.10571172)the National Basic Research Program(Grant No.2005CB321704)the Youth's Innovative Program of Chinese Academy of Sciences(Grant Nos.K7290312G9,K7502712F9)
文摘In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.
基金The project is supported by the National Natural Science Foundation of China(10502028)the Special Foundation for the Authors of the Nationwide(China)Excellent Doctoral Dissertation(200242)the Science Research Foundation of China Agricultural University(2004016).
文摘Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.
文摘This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.
文摘In this paper, in order to find a set of element orders of projective special liner group PSL(2,q) and num-bers of elements every order and order of group,we give a search algorithm and discuss complexity of the algorithm.
基金supported by the National Natural Science Foundation of China (10701083 and 10425105)the National Basic Research Program of China (2005CB321704).
文摘In this paper, a two-scale higher-order finite element discretization scheme is proposed and analyzed for a Schroedinger equation on tensor product domains. With the scheme, the solution of the eigenvalue problem on a fine grid can be reduced to an eigenvalue problem on a much coarser grid together with some eigenvalue problems on partially fine grids. It is shown theoretically and numerically that the proposed two-scale higher-order scheme not only significantly reduces the number of degrees of freedom but also produces very accurate approximations.
基金The project was supported by the National Natural Science Foundation of China(11001037,11102037,11072156)the Fundamental Research Funds for the Central Universities of China(DUT10ZD112,DUT10JS02)
文摘In this paper,a 13-node pyramid spline element is derived by using the tetrahedron volume coordinates and the B-net method,which achieves the second order completeness in Cartesian coordinates.Some appropriate examples were employed to evaluate the performance of the proposed element.The numerical results show that the spline element has much better performance compared with the isoparametric serendipity element Q20 and its degenerate pyramid element P13 especially when mesh is distorted,and it is comparable to the Lagrange element Q27.It has been demonstrated that the spline finite element method is an efficient tool for developing high accuracy elements.
文摘A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.
基金This research is supported by the National Science Fbundation of China(No.10371113).
文摘The main aim of this paper is to show that the quadrilateral mesh condition RDP(N, ψ) is only sufficient but not necessary for the optimal order error estimate of the Q isoparametric element in the Hi norm.
基金the National Natural Science Foundation of China (No.40023001 and 40075015)KZCX2-208 of the Chinese Academy of Sciences.
文摘 Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a coupled system of three dimensional nonlinear partial differential equations with initial-boundary value problems. In this paper, according to the actual conditions of molecular and three-dimensional characteristic of the problem, we construct the characteristic finite element alternating-direction schemes which can be divided into three continuous one-dimensional problems. By making use of tensor product algorithm, and priori estimation theory and techniques, the optimal order estimates in H1 norm are derived for the error in the approximate solution.
文摘'ELEMENT orders' is one of the most fundamental concepts in group theory. It plays an impor-tant role in the research of group theory, which can be seen from the famous Burnside’s prob-lem. Some well-known group theory specialists, such as Neumann, Higman, Suzuki and oth-ers, have studied the groups whose element orders take the special values. In 1981 wediscussed the finite groups of all those whose elements are of prime order except identity ele-