The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition...The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillusferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121℃ for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4+-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4+-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of slud展开更多
In acid treatment technology of Baotou mixed rare earth ore,large quantities of ammonia-nitrogen wastewater are produced in the step of ammonium bicarbonate precipitation to transform rare earth sulfate.In this paper,...In acid treatment technology of Baotou mixed rare earth ore,large quantities of ammonia-nitrogen wastewater are produced in the step of ammonium bicarbonate precipitation to transform rare earth sulfate.In this paper,we adopted a green precipitant magnesium bicarbonate(Mg(HCO3)2) to substitute ammonium bicarbonate to eliminate ammonia-nitrogen pollution.The effects of n(HCO3^-):n(RE^3+),aging temperature and aging time on the crystallization using Mg(HCO3)2 precipitation method were investigated.The results indicate that the rare earths could be completely recovered when n(HCO3^-):n(RE^3+) is higher than 3.15:1.The crystal water content of rare earth carbonates is affected by the aging temperature.The precipitate has a bad filterability when the aging temperature is over 40℃.This can be attributed to the less crystallized water molecules of the hydrated rare earth carbonate precipitation.The mixed rare earth carbonates are prone to be crystalline,and have a good filterability at aging temperatures below 40℃.Meanwhile,the evolution mechanism of crystalline mixed rare earth carbonates is reasonably deduced,the amorphous rare earth carbonates are first dissolute and then recrystallized.Under the optimized aging conditions,the purity of the crystalline precipitate meets the requirements of the fine product standard(GB/T 16479-2008).The filtrated could be used to produce Mg(HCO3)2,thus to realize the recycling of magnesium sulfate.展开更多
The poor salt tolerance,thermal stability,and environmental performance of petrochemicals can severely limit their applications in drilling engineering.In this study,cellulose nanofibril(CNF)hydrogels with improved sa...The poor salt tolerance,thermal stability,and environmental performance of petrochemicals can severely limit their applications in drilling engineering.In this study,cellulose nanofibril(CNF)hydrogels with improved salt tolerance and thermal stability were prepared,and their filtration performance was evaluated.The hydrogels were prepared through the simultaneous grafting of 2-acrylamido-2-methylpropane sulfonic acid(AMPS)and butyl acrylate(BA)onto the CNF surface through ceric ammoniumnitrate-induced radical polymerization.The modified and original CNF samples were characterized using Fourier Transform infrared spectroscopy(FT-IR)and rheological measurements.The FT-IR analysis results showed that both AMPS and BA were grafted onto the CNF backbone,affirming the successful preparation of the grafted CNFs.The rheological analysis results showed that the modified CNF hydrogels exhibited significantly improved salt tolerance,thermal stability,and“salt-thickening”effect.Moreover,the results of the fluid loss test showed that the modified CNF hydrogels exhibited a much better fluid loss control than the original CNF hydrogels.In addition,after adding 2%modified CNF hydrogels as a filtrate reducer in the drilling fluids prepared with a 6%combined salt solution,the filtrate loss was significantly reduced even after aging for 72 h at 160℃.展开更多
Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss...Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss (TEWL). Recent advances in coherence tomography have also revealed that skin aging affects in vivo epidermal keratinocyte architecture. However, the interconnectivity between spatial architectural aging and visual/physiological aging parameters remains largely unknown. Purpose: To elucidate whether the tomographic keratinocyte architectural aging is correlated with visual and physiological skin aging parameters and to quantitatively evaluate the improvements of the architectural, visual, and physiological aging parameters by the daily treatment of the skin care formula containing Galactomyces Ferment Filtrate (GFF, 8X Pitera<sup>TM</sup>). Method: We measured the in vivo keratinocyte cellular architecture with two-photon stereoscopic tomography obtaining by-layer epidermal section images in 78 Asian females of various ages. Visual aging parameters were analyzed using a portable image capture system. Hydration and TEWL were also assessed. The anti-aging effects of GFF-containing skin moisturizer (SK-II LXP Cream<sup>TM</sup>) were also examined in two studies after twice-daily application for 2 (N = 35) and 4 (N = 32) weeks. Results: As for the keratinocyte cellular architecture, skin aging was significantly associated with decreased cell density and increased cell uniformity. These architectural aging parameters were significantly correlated with visual and physiological aging parameters, namely, rough texture, wrinkles, pore dilation, dull skin tone, dehydration, and increased TEWL. The strong interconnectivity allowed us to develop formulae to estimate the keratinocyte architecture from visual aging parameters. Moreover, twice-daily application of SK-II significantly improved the keratinocyte architecture associated with multiple skin aging visual and physiological parameters. Conclusion: Skin agi展开更多
Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reporte...Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reported conflicting findings on the relationship between NMF levels and aging, while few studies have investigated this relationship clinically. To fill this research gap, we determined the levels of major NMF components such as free amino acids, pyrrolidone carboxylic acid, and urocanic acids, and individually verified their relationships with skin hydration, barrier function, age, and skin aging. Purpose: The objective of this study was to clinically investigate the relationship between NMF components levels and skin aging in facial skin. The main NMF components were obtained from facial skin and quantified. We then selected NMF components showing strong relationships to skin hydration, and analyzed the relationships of the levels of these selected NMF components with signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). We also examined the efficacy of treatment with a skin care formula (SK-II Facial Treatment Essence, called SK-II FTE hereafter) including Galactomyces ferment filtrate (GFF, PiteraTM) on the selected NMF component levels associated with skin hydration and barrier function, and the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Method: We conducted two clinical trials in this research. In Study 1, we measured 23 NMF components using tape-stripped cornified layer to quantify them via an HPLC method in 196 Asian females aged 20 to 59 (mean S.D., 38.6 9.4). Facial visual aging parameters [texture, pores, wrinkles, and dullness (L-value)], as well as elasticity (R7), skin hydration, and TEWL, were quantified using facial skin imaging and skin physical property measurement devices. Study 2 was performed to evaluate whether the facial application of SK-II FTE affects the NMF levels and skin aging parameters in 63 Asian female volunteers aged 2展开更多
基金supported by the National Natural Science Foundation of China (No. 21177060,20977048)the National High Technology Research and Development Program (863) of China (No. 2012AA063301)
文摘The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillusferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121℃ for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4+-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4+-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of slud
基金supported by the National Science and Technology Support Program of China(2015BAB16B02)the National Natural Science Foundation of China(51504034).
文摘In acid treatment technology of Baotou mixed rare earth ore,large quantities of ammonia-nitrogen wastewater are produced in the step of ammonium bicarbonate precipitation to transform rare earth sulfate.In this paper,we adopted a green precipitant magnesium bicarbonate(Mg(HCO3)2) to substitute ammonium bicarbonate to eliminate ammonia-nitrogen pollution.The effects of n(HCO3^-):n(RE^3+),aging temperature and aging time on the crystallization using Mg(HCO3)2 precipitation method were investigated.The results indicate that the rare earths could be completely recovered when n(HCO3^-):n(RE^3+) is higher than 3.15:1.The crystal water content of rare earth carbonates is affected by the aging temperature.The precipitate has a bad filterability when the aging temperature is over 40℃.This can be attributed to the less crystallized water molecules of the hydrated rare earth carbonate precipitation.The mixed rare earth carbonates are prone to be crystalline,and have a good filterability at aging temperatures below 40℃.Meanwhile,the evolution mechanism of crystalline mixed rare earth carbonates is reasonably deduced,the amorphous rare earth carbonates are first dissolute and then recrystallized.Under the optimized aging conditions,the purity of the crystalline precipitate meets the requirements of the fine product standard(GB/T 16479-2008).The filtrated could be used to produce Mg(HCO3)2,thus to realize the recycling of magnesium sulfate.
基金the National Natural Science Foundation of China(Grant No.31700514)the Natural Science Foundation of Tianjin,China(Grant No.18JCYBJC86500)for their financial supports
文摘The poor salt tolerance,thermal stability,and environmental performance of petrochemicals can severely limit their applications in drilling engineering.In this study,cellulose nanofibril(CNF)hydrogels with improved salt tolerance and thermal stability were prepared,and their filtration performance was evaluated.The hydrogels were prepared through the simultaneous grafting of 2-acrylamido-2-methylpropane sulfonic acid(AMPS)and butyl acrylate(BA)onto the CNF surface through ceric ammoniumnitrate-induced radical polymerization.The modified and original CNF samples were characterized using Fourier Transform infrared spectroscopy(FT-IR)and rheological measurements.The FT-IR analysis results showed that both AMPS and BA were grafted onto the CNF backbone,affirming the successful preparation of the grafted CNFs.The rheological analysis results showed that the modified CNF hydrogels exhibited significantly improved salt tolerance,thermal stability,and“salt-thickening”effect.Moreover,the results of the fluid loss test showed that the modified CNF hydrogels exhibited a much better fluid loss control than the original CNF hydrogels.In addition,after adding 2%modified CNF hydrogels as a filtrate reducer in the drilling fluids prepared with a 6%combined salt solution,the filtrate loss was significantly reduced even after aging for 72 h at 160℃.
文摘Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss (TEWL). Recent advances in coherence tomography have also revealed that skin aging affects in vivo epidermal keratinocyte architecture. However, the interconnectivity between spatial architectural aging and visual/physiological aging parameters remains largely unknown. Purpose: To elucidate whether the tomographic keratinocyte architectural aging is correlated with visual and physiological skin aging parameters and to quantitatively evaluate the improvements of the architectural, visual, and physiological aging parameters by the daily treatment of the skin care formula containing Galactomyces Ferment Filtrate (GFF, 8X Pitera<sup>TM</sup>). Method: We measured the in vivo keratinocyte cellular architecture with two-photon stereoscopic tomography obtaining by-layer epidermal section images in 78 Asian females of various ages. Visual aging parameters were analyzed using a portable image capture system. Hydration and TEWL were also assessed. The anti-aging effects of GFF-containing skin moisturizer (SK-II LXP Cream<sup>TM</sup>) were also examined in two studies after twice-daily application for 2 (N = 35) and 4 (N = 32) weeks. Results: As for the keratinocyte cellular architecture, skin aging was significantly associated with decreased cell density and increased cell uniformity. These architectural aging parameters were significantly correlated with visual and physiological aging parameters, namely, rough texture, wrinkles, pore dilation, dull skin tone, dehydration, and increased TEWL. The strong interconnectivity allowed us to develop formulae to estimate the keratinocyte architecture from visual aging parameters. Moreover, twice-daily application of SK-II significantly improved the keratinocyte architecture associated with multiple skin aging visual and physiological parameters. Conclusion: Skin agi
文摘Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reported conflicting findings on the relationship between NMF levels and aging, while few studies have investigated this relationship clinically. To fill this research gap, we determined the levels of major NMF components such as free amino acids, pyrrolidone carboxylic acid, and urocanic acids, and individually verified their relationships with skin hydration, barrier function, age, and skin aging. Purpose: The objective of this study was to clinically investigate the relationship between NMF components levels and skin aging in facial skin. The main NMF components were obtained from facial skin and quantified. We then selected NMF components showing strong relationships to skin hydration, and analyzed the relationships of the levels of these selected NMF components with signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). We also examined the efficacy of treatment with a skin care formula (SK-II Facial Treatment Essence, called SK-II FTE hereafter) including Galactomyces ferment filtrate (GFF, PiteraTM) on the selected NMF component levels associated with skin hydration and barrier function, and the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Method: We conducted two clinical trials in this research. In Study 1, we measured 23 NMF components using tape-stripped cornified layer to quantify them via an HPLC method in 196 Asian females aged 20 to 59 (mean S.D., 38.6 9.4). Facial visual aging parameters [texture, pores, wrinkles, and dullness (L-value)], as well as elasticity (R7), skin hydration, and TEWL, were quantified using facial skin imaging and skin physical property measurement devices. Study 2 was performed to evaluate whether the facial application of SK-II FTE affects the NMF levels and skin aging parameters in 63 Asian female volunteers aged 2