Ferroelectric memory is a promising candidate for next-generation nonvolatile memory owing to its outstanding performance such as low power consump-tion,fast speed,and high endurance.However,the ferroelectricity of co...Ferroelectric memory is a promising candidate for next-generation nonvolatile memory owing to its outstanding performance such as low power consump-tion,fast speed,and high endurance.However,the ferroelectricity of conven-tional ferroelectric materials will be eliminated by the depolarization field when the size drops to the nanometer scale.As a result,the miniaturization of ferroelectric devices was hindered,which makes ferroelectric memory unable to keep up with the development of integrated-circuit(IC)miniaturization.Recently,a two-dimensional(2D)In2Se3 was reported to maintain stable ferro-electricity at the ultrathin scale,which is expected to break through the bottle-neck of miniaturization.Soon,devices based on 2D In2Se3,including the ferroelectric field-effect transistor,ferroelectric channel transistor,synaptic fer-roelectric semiconductor junction,and ferroelectric memristor were demon-strated.However,a comprehensive understanding of the structures and the ferroelectric-switching mechanism of 2D In2Se3 is still lacking.Here,the atomic structures of different phases,the dynamic mechanism of ferroelectric switching,and the performance/functions of the latest devices of 2D In2Se3 are reviewed.Furthermore,the correlations among the structures,the properties,and the device performance are analyzed.Finally,several crucial problems or challenges and possible research directions are put forward.We hope that this review paper can provide timely knowledge and help for the research commu-nity to develop 2D In2Se3 based ferroelectric memory and computing technol-ogy for practical industrial applications.展开更多
The emergence of data-centric applications such as artificial intelligence(AI),machine learning,and the Internet of Things(IoT),has promoted surges in demand for storage memories with high operating speed and nonvolat...The emergence of data-centric applications such as artificial intelligence(AI),machine learning,and the Internet of Things(IoT),has promoted surges in demand for storage memories with high operating speed and nonvolatile characteristics.HfO_(2)-based ferroelectric memory technologies,which emerge as a promising alternative,have attracted considerable attention due to their high performance,energy efficiency,and full compatibility with the standard complementary metal-oxide-semiconductors(CMOS)process.These nonvolatile storage elements,such as ferroelectric random access memory(FeRAM),ferroelectric field-effect transistors(FeFETs),and ferroelectric tunnel junctions(FTJs),possess different data access mechanisms,individual merits,and specific application boundaries in next-generation memories or even beyond von Neumann architecture.This paper provides an overview of ferroelectric HfO2 memory technologies,addresses the current challenges,and offers insights into future research directions and prospects.展开更多
The rapid advancement of AI-enabled applications has resulted in an increasing need for energy-efficient computing hardware.Logic-in-memory is a promising approach for processing the data stored in memory,wherein fast...The rapid advancement of AI-enabled applications has resulted in an increasing need for energy-efficient computing hardware.Logic-in-memory is a promising approach for processing the data stored in memory,wherein fast and efficient computations are possible owing to the parallel execution of reconfigurable logic operations.In this study,a dual-logic-in-memory device,which can simultaneously perform two logic operations in four states,is demonstrated using van der Waals ferroelectric field-effect transistors(vdW FeFETs).The proposed dual-logic-in-memory device,which also acts as a twobit storage device,is a single bidirectional polarization-integrated ferroelectric field-effect transistor(BPI-FeFET).It is fabricated by integrating an in-plane vdW ferroelectric semiconductor SnS and an out-of-plane vdW ferroelectric gate dielectric material—CuInP_(2)S_(6).Four reliable resistance states with excellent endurance and retention characteristics were achieved.The two-bit storage mechanism in a BPI-FeFET was analyzed from two perspectives:carrier density and carrier injection controls,which originated from the out-of-plane polarization of the gate dielectric and in-plane polarization of the semiconductor,respectively.Unlike conventional multilevel FeFETs,the proposed BPIFeFET does not require additional pre-examination or erasing steps to switch from/to an intermediate polarization,enabling direct switching between the four memory states.To utilize the fabricated BPI-FeFET as a dual-logic-inmemory device,two logical operations were selected(XOR and AND),and their parallel execution was demonstrated.Different types of logic operations could be implemented by selecting different initial states,demonstrating various types of functions required for numerous neural network operations.The flexibility and efficiency of the proposed dual-logic-in-memory device appear promising in the realization of next-generation low-power computing systems.展开更多
In recent years,the emergence of numerous applications of artificial intelligence(AI)has sparked a new technological revolution.These applications include facial recognition,autonomous driving,intelligent robotics,and...In recent years,the emergence of numerous applications of artificial intelligence(AI)has sparked a new technological revolution.These applications include facial recognition,autonomous driving,intelligent robotics,and image restoration.However,the data processing and storage procedures in the conventional von Neumann architecture are discrete,which leads to the“memory wall”problem.As a result,such architecture is incompatible with AI requirements for efficient and sustainable processing.Exploring new computing architectures and material bases is therefore imperative.Inspired by neurobiological systems,in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture.The basis of neural morphological computation is a crossbar array of high-density,high-efficiency non-volatile memory devices.Among the numerous candidate memory devices,ferroelectric memory devices with non-volatile polarization states,low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing.Further research on the complementary metal-oxide-semiconductor(CMOS)compatibility for these devices is underway and has yielded favorable results.Herein,we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks.Subsequently,we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing.Finally,we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.展开更多
The discoveries of ferromagnetic and ferroelectric two-dimensional(2D)materials have dramatically inspired intense interests due to their potential in the field of spintronic and nonvolatile memories.This review focus...The discoveries of ferromagnetic and ferroelectric two-dimensional(2D)materials have dramatically inspired intense interests due to their potential in the field of spintronic and nonvolatile memories.This review focuses on the latest 2D ferromagnetic and ferroelectric materials that have been most recently studied,including insulating ferromagnetic,metallic ferromagnetic,antiferromagnetic and ferroelectric 2D materials.The fundamental properties that lead to the long-range magnetic orders of 2D materials are discussed.The low Curie temperature(Tc)and instability in 2D systems limits their use in practical applications,and several strategies to address this constraint are proposed,such as gating and composition stoichiometry.A van der Waals(vdW)heterostructure comprising 2D ferromagnetic and ferroelectric materials will open a door to exploring exotic physical phenomena and achieve multifunctional or nonvolatile devices.展开更多
The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an...The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an a-phase indium selenide(a-In_(2)Se_(3))transistor,which is a two-dimensional ferroelectric semiconductor as the channel material,to create artificial optic-neural and electro-neural synapses,enabling cutting-edge processing-in-sensor(PIS)and computing-in-memory(CIM)functionalities.As an optic-neural synapse for low-level sensory processing,the a-In_(2)Se_(3)transistor exhibits a high photoresponsivity(2855 A/W)and detectivity(2.91×10^(14)Jones),facilitating efficient feature extraction.For high-level processing tasks as an electro-neural synapse,it offers a fast program/erase speed of 40 ns/50μs and ultralow energy consumption of 0.37 aJ/spike.An AI vision system using a-In_(2)Se_(3)transistors has been demonstrated.It achieved an impressive recognition accuracy of 92.63%within 12 epochs owing to the synergistic combination of the PIS and CIM functionalities.This study demonstrates the potential of the a-In_(2)Se_(3)transistor in future vision hardware,enhancing processing,power efficiency,and AI applications.展开更多
Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent yea...Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.展开更多
Ferroelectric HfO_(2)-based materials and devices show promising potential for applications in information technology but face challenges with inadequate electrostatic control,degraded reliability,and serious variatio...Ferroelectric HfO_(2)-based materials and devices show promising potential for applications in information technology but face challenges with inadequate electrostatic control,degraded reliability,and serious variation in effective oxide thickness scaling.We demonstrate a novel interface-type switching strategy to realize ferroelectric characteristics in atomic-scale amorphous binary oxide films,which are formed in oxygen-deficient conditions by atomic layer deposition at low temperatures.This approach can avoid the shortcomings of reliability degradation and gate leakage increment in scaling polycrystalline doped HfO_(2)-based films.Using theoretical modeling and experimental characterization,we show the following.(1)Emerging ferroelectricity exists in ultrathin oxide systems as a result of microscopic ion migration during the switching process.(2)These ferroelectric binary oxide films are governed by an interface-limited switching mechanism,which can be attributed to oxygen vacancy migration and surface defects related to electron(de)trapping.(3)Transistors featuring ultrathin amorphous dielectrics,used for non-volatile memory applications with an operating voltage reduced to±1 V,have also been experimentally demonstrated.These findings suggest that this strategy is a promising approach to realizing next-generation complementary metal-oxide semiconductors with scalable ferroelectric materials.展开更多
With major signal analytical elements situated away from the measurement environment,extended gate(EG)ion-sensitive fieldeffect transistors(ISFETs)offer prospects for whole chip circuit design and system integration o...With major signal analytical elements situated away from the measurement environment,extended gate(EG)ion-sensitive fieldeffect transistors(ISFETs)offer prospects for whole chip circuit design and system integration of chemical sensors.In this work,a highly sensitive and power-efficient ISFET was proposed based on a metal-ferroelectric-insulator gate stack with negative capacitance–induced super-steep subthreshold swing and ferroelectric memory function.Along with a remotely connected EG electrode,the architecture facilitates diverse sensing functions for future establishment of smart biochemical sensor platforms.展开更多
基金China Postdoctoral Science Foundation,Grant/Award Number:2019M661200National Natural Science Foundation of China,Grant/Award Numbers:11874171,11904118,61922035Fundamental Research Funds for the Central Universities。
文摘Ferroelectric memory is a promising candidate for next-generation nonvolatile memory owing to its outstanding performance such as low power consump-tion,fast speed,and high endurance.However,the ferroelectricity of conven-tional ferroelectric materials will be eliminated by the depolarization field when the size drops to the nanometer scale.As a result,the miniaturization of ferroelectric devices was hindered,which makes ferroelectric memory unable to keep up with the development of integrated-circuit(IC)miniaturization.Recently,a two-dimensional(2D)In2Se3 was reported to maintain stable ferro-electricity at the ultrathin scale,which is expected to break through the bottle-neck of miniaturization.Soon,devices based on 2D In2Se3,including the ferroelectric field-effect transistor,ferroelectric channel transistor,synaptic fer-roelectric semiconductor junction,and ferroelectric memristor were demon-strated.However,a comprehensive understanding of the structures and the ferroelectric-switching mechanism of 2D In2Se3 is still lacking.Here,the atomic structures of different phases,the dynamic mechanism of ferroelectric switching,and the performance/functions of the latest devices of 2D In2Se3 are reviewed.Furthermore,the correlations among the structures,the properties,and the device performance are analyzed.Finally,several crucial problems or challenges and possible research directions are put forward.We hope that this review paper can provide timely knowledge and help for the research commu-nity to develop 2D In2Se3 based ferroelectric memory and computing technol-ogy for practical industrial applications.
基金supported in part by National Natural Science Foundation(62274101,U20A20168,61874065,51861145202)of Chinain part by the National Key R&D Program(2021YFC3002200,2020YFA0709800,2018YFC2001202,2022Y FB3204100)of China+2 种基金in part by JCCDFSIT(2022CDF003)QYJS-2022-1600-BBNR2024RC01002.
文摘The emergence of data-centric applications such as artificial intelligence(AI),machine learning,and the Internet of Things(IoT),has promoted surges in demand for storage memories with high operating speed and nonvolatile characteristics.HfO_(2)-based ferroelectric memory technologies,which emerge as a promising alternative,have attracted considerable attention due to their high performance,energy efficiency,and full compatibility with the standard complementary metal-oxide-semiconductors(CMOS)process.These nonvolatile storage elements,such as ferroelectric random access memory(FeRAM),ferroelectric field-effect transistors(FeFETs),and ferroelectric tunnel junctions(FTJs),possess different data access mechanisms,individual merits,and specific application boundaries in next-generation memories or even beyond von Neumann architecture.This paper provides an overview of ferroelectric HfO2 memory technologies,addresses the current challenges,and offers insights into future research directions and prospects.
基金Korean Government(MSIP),Grant/Award Numbers:RS-2023-00281048,2022R1A2C3003068,2022M3F3A2A01072215supported by Samsung Electronics Co.,Ltd.(IO201215-08197-01).
文摘The rapid advancement of AI-enabled applications has resulted in an increasing need for energy-efficient computing hardware.Logic-in-memory is a promising approach for processing the data stored in memory,wherein fast and efficient computations are possible owing to the parallel execution of reconfigurable logic operations.In this study,a dual-logic-in-memory device,which can simultaneously perform two logic operations in four states,is demonstrated using van der Waals ferroelectric field-effect transistors(vdW FeFETs).The proposed dual-logic-in-memory device,which also acts as a twobit storage device,is a single bidirectional polarization-integrated ferroelectric field-effect transistor(BPI-FeFET).It is fabricated by integrating an in-plane vdW ferroelectric semiconductor SnS and an out-of-plane vdW ferroelectric gate dielectric material—CuInP_(2)S_(6).Four reliable resistance states with excellent endurance and retention characteristics were achieved.The two-bit storage mechanism in a BPI-FeFET was analyzed from two perspectives:carrier density and carrier injection controls,which originated from the out-of-plane polarization of the gate dielectric and in-plane polarization of the semiconductor,respectively.Unlike conventional multilevel FeFETs,the proposed BPIFeFET does not require additional pre-examination or erasing steps to switch from/to an intermediate polarization,enabling direct switching between the four memory states.To utilize the fabricated BPI-FeFET as a dual-logic-inmemory device,two logical operations were selected(XOR and AND),and their parallel execution was demonstrated.Different types of logic operations could be implemented by selecting different initial states,demonstrating various types of functions required for numerous neural network operations.The flexibility and efficiency of the proposed dual-logic-in-memory device appear promising in the realization of next-generation low-power computing systems.
基金supported by National Key Research and Development Program of China(2021YFA1200700)The National Natural Science Foundation of China(T2222025 and 62174053)+2 种基金Open Research Projects of Zhejiang Lab(2021MD0AB03)Shanghai Science and Technology Innovation Action Plan(21JC1402000 and 21520714100)the Fundamental Research Funds for the Central Universities。
文摘In recent years,the emergence of numerous applications of artificial intelligence(AI)has sparked a new technological revolution.These applications include facial recognition,autonomous driving,intelligent robotics,and image restoration.However,the data processing and storage procedures in the conventional von Neumann architecture are discrete,which leads to the“memory wall”problem.As a result,such architecture is incompatible with AI requirements for efficient and sustainable processing.Exploring new computing architectures and material bases is therefore imperative.Inspired by neurobiological systems,in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture.The basis of neural morphological computation is a crossbar array of high-density,high-efficiency non-volatile memory devices.Among the numerous candidate memory devices,ferroelectric memory devices with non-volatile polarization states,low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing.Further research on the complementary metal-oxide-semiconductor(CMOS)compatibility for these devices is underway and has yielded favorable results.Herein,we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks.Subsequently,we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing.Finally,we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.
基金the National Natural Science Foundation of China(Nos.51602040 and 51872039)Science and Technology Program of Sichuan(No.M112018JY0025)Scientific Research Foundation for New Teachers of UESTC(No.A03013023601007).
文摘The discoveries of ferromagnetic and ferroelectric two-dimensional(2D)materials have dramatically inspired intense interests due to their potential in the field of spintronic and nonvolatile memories.This review focuses on the latest 2D ferromagnetic and ferroelectric materials that have been most recently studied,including insulating ferromagnetic,metallic ferromagnetic,antiferromagnetic and ferroelectric 2D materials.The fundamental properties that lead to the long-range magnetic orders of 2D materials are discussed.The low Curie temperature(Tc)and instability in 2D systems limits their use in practical applications,and several strategies to address this constraint are proposed,such as gating and composition stoichiometry.A van der Waals(vdW)heterostructure comprising 2D ferromagnetic and ferroelectric materials will open a door to exploring exotic physical phenomena and achieve multifunctional or nonvolatile devices.
基金supported by the National Natural Science Foundation of China(62104066,52221001,62090035,U19A2090,U22A20138,52372146,and 62101181)the National Key R&D Program of China(2022YFA1402501,2022YFA1204300)+6 种基金the Natural Science Foundation of Hunan Province(2021JJ20016)the Science and Technology Innovation Program of Hunan Province(2021RC3061)the Key Program of Science and Technology Department of Hunan Province(2019XK2001,2020XK2001)the Open Project Program of Wuhan National Laboratory for Optoelectronics(2020WNLOKF016)the Open Project Program of Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(22ZS01)the Project funded by China Postdoctoral Science Foundation(2023TQ0110)the Innovation Project of Optics Valley Laboratory(OVL2023ZD002).
文摘The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an a-phase indium selenide(a-In_(2)Se_(3))transistor,which is a two-dimensional ferroelectric semiconductor as the channel material,to create artificial optic-neural and electro-neural synapses,enabling cutting-edge processing-in-sensor(PIS)and computing-in-memory(CIM)functionalities.As an optic-neural synapse for low-level sensory processing,the a-In_(2)Se_(3)transistor exhibits a high photoresponsivity(2855 A/W)and detectivity(2.91×10^(14)Jones),facilitating efficient feature extraction.For high-level processing tasks as an electro-neural synapse,it offers a fast program/erase speed of 40 ns/50μs and ultralow energy consumption of 0.37 aJ/spike.An AI vision system using a-In_(2)Se_(3)transistors has been demonstrated.It achieved an impressive recognition accuracy of 92.63%within 12 epochs owing to the synergistic combination of the PIS and CIM functionalities.This study demonstrates the potential of the a-In_(2)Se_(3)transistor in future vision hardware,enhancing processing,power efficiency,and AI applications.
文摘Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.
基金support from the National Key R&D Program of China(No.2022ZD0119002)the National Natural Science Foundation of China(Grant Nos.62204226,62025402,62090033,92364204,92264202 and 62293522)Major Program of Zhejiang Natural Science Foundation(Grant No.LDT23F04024F04).
文摘Ferroelectric HfO_(2)-based materials and devices show promising potential for applications in information technology but face challenges with inadequate electrostatic control,degraded reliability,and serious variation in effective oxide thickness scaling.We demonstrate a novel interface-type switching strategy to realize ferroelectric characteristics in atomic-scale amorphous binary oxide films,which are formed in oxygen-deficient conditions by atomic layer deposition at low temperatures.This approach can avoid the shortcomings of reliability degradation and gate leakage increment in scaling polycrystalline doped HfO_(2)-based films.Using theoretical modeling and experimental characterization,we show the following.(1)Emerging ferroelectricity exists in ultrathin oxide systems as a result of microscopic ion migration during the switching process.(2)These ferroelectric binary oxide films are governed by an interface-limited switching mechanism,which can be attributed to oxygen vacancy migration and surface defects related to electron(de)trapping.(3)Transistors featuring ultrathin amorphous dielectrics,used for non-volatile memory applications with an operating voltage reduced to±1 V,have also been experimentally demonstrated.These findings suggest that this strategy is a promising approach to realizing next-generation complementary metal-oxide semiconductors with scalable ferroelectric materials.
基金the National Natural Science Foundation of China No.52073160the National Key Research and Development Program of China No.2020YFF01014706+1 种基金Beijing Municipal Science and Technology Commission(Z211100002421012)Key Laboratory of Advanced Materials(MOE).
文摘With major signal analytical elements situated away from the measurement environment,extended gate(EG)ion-sensitive fieldeffect transistors(ISFETs)offer prospects for whole chip circuit design and system integration of chemical sensors.In this work,a highly sensitive and power-efficient ISFET was proposed based on a metal-ferroelectric-insulator gate stack with negative capacitance–induced super-steep subthreshold swing and ferroelectric memory function.Along with a remotely connected EG electrode,the architecture facilitates diverse sensing functions for future establishment of smart biochemical sensor platforms.