This paper investigates the consensus problem for linear multi-agent systems with the heterogeneous disturbances generated by the Brown motion.Its main contribution is that a control scheme is designed to achieve the ...This paper investigates the consensus problem for linear multi-agent systems with the heterogeneous disturbances generated by the Brown motion.Its main contribution is that a control scheme is designed to achieve the dynamic consensus for the multi-agent systems in directed topology interfered by stochastic noise.In traditional ways,the coupling weights depending on the communication structure are static.A new distributed controller is designed based on Riccati inequalities,while updating the coupling weights associated with the gain matrix by state errors between adjacent agents.By introducing time-varying coupling weights into this novel control law,the state errors between leader and followers asymptotically converge to the minimum value utilizing the local interaction.Through the Lyapunov directed method and It?formula,the stability of the closed-loop system with the proposed control law is analyzed.Two simulation results conducted by the new and traditional schemes are presented to demonstrate the effectiveness and advantage of the developed control method.展开更多
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin...The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.展开更多
This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results...This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.展开更多
The accurate estimation of road friction coeffi- cient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or la...The accurate estimation of road friction coeffi- cient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coef- ficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coef- ficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode sur- face. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time andresist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.展开更多
基金supported in part by the National Natural Science Foundation of China(61722312,61533017,62073321)the National Key Research and Development Program of China(2018YFB1702300)。
文摘This paper investigates the consensus problem for linear multi-agent systems with the heterogeneous disturbances generated by the Brown motion.Its main contribution is that a control scheme is designed to achieve the dynamic consensus for the multi-agent systems in directed topology interfered by stochastic noise.In traditional ways,the coupling weights depending on the communication structure are static.A new distributed controller is designed based on Riccati inequalities,while updating the coupling weights associated with the gain matrix by state errors between adjacent agents.By introducing time-varying coupling weights into this novel control law,the state errors between leader and followers asymptotically converge to the minimum value utilizing the local interaction.Through the Lyapunov directed method and It?formula,the stability of the closed-loop system with the proposed control law is analyzed.Two simulation results conducted by the new and traditional schemes are presented to demonstrate the effectiveness and advantage of the developed control method.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.
基金supported in part by the National Natural Science Foundation of China(61673106)the Natural Science Foundation of Jiangsu Province(BK20171362)the Fundamental Research Funds for the Central Universities(2242019K40024)
文摘This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.NS2015015)
文摘The accurate estimation of road friction coeffi- cient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coef- ficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coef- ficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode sur- face. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time andresist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.