We report the superconductivity in iron-based oxyarsenide Sm[O1-xFx]FeAs, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6K. This compound has the same crystal structure as La...We report the superconductivity in iron-based oxyarsenide Sm[O1-xFx]FeAs, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices, and becomes the superconductor with the highest critical temperature among all materials besides copper oxides up to now.展开更多
The strength of flammable gas cloud explosion has been experimentally researched by means of acetylene-air clouds which were ignited by electric sparks.The ignition device which provides ignition energy of about 100mJ...The strength of flammable gas cloud explosion has been experimentally researched by means of acetylene-air clouds which were ignited by electric sparks.The ignition device which provides ignition energy of about 100mJ was made according to international standard ISO 6184 and American Standard NFPA68. The explosion pressure was picked up by pressure transducer with a dynamic responding time of 0.001 s and recorded by computer. By regressing the experimental data,the relationship of gas cloud explosion pressure to the initial radius of gas cloud and the distance to the center of gas cloud can be obtained. That is p=Ar 2 0/r where A is a constant depending on flammable gas cloud.The damage of unrestricted gas cloud to building structure is discussed based on the strength of houses.展开更多
The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an impo...The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world. This paper provides an overview of the research work in China on blast loads effect on building structures. It includes modeling blast shock wave propagation and their effects, the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads. The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures, and for deriving effective and economic techniques to design new or to strengthen existing structures.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10734120 and 50571111, and National Basic Research Program of China under Grant Nos 2006CB601001 and 2007CB925002, and the Project COMEPHS TTC from EC.
文摘We report the superconductivity in iron-based oxyarsenide Sm[O1-xFx]FeAs, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices, and becomes the superconductor with the highest critical temperature among all materials besides copper oxides up to now.
文摘The strength of flammable gas cloud explosion has been experimentally researched by means of acetylene-air clouds which were ignited by electric sparks.The ignition device which provides ignition energy of about 100mJ was made according to international standard ISO 6184 and American Standard NFPA68. The explosion pressure was picked up by pressure transducer with a dynamic responding time of 0.001 s and recorded by computer. By regressing the experimental data,the relationship of gas cloud explosion pressure to the initial radius of gas cloud and the distance to the center of gas cloud can be obtained. That is p=Ar 2 0/r where A is a constant depending on flammable gas cloud.The damage of unrestricted gas cloud to building structure is discussed based on the strength of houses.
基金Supported by National Science Fund for Distinguished Young Scholars of China (No. 50425824)
文摘The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world. This paper provides an overview of the research work in China on blast loads effect on building structures. It includes modeling blast shock wave propagation and their effects, the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads. The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures, and for deriving effective and economic techniques to design new or to strengthen existing structures.