In this paper,we develop a new algorithm to find the exact solutions of the Einstein's field equations.Time-periodic solutions are constructed by using the new algorithm.The singularities of the time-periodic solu...In this paper,we develop a new algorithm to find the exact solutions of the Einstein's field equations.Time-periodic solutions are constructed by using the new algorithm.The singularities of the time-periodic solutions are investigated and some new physical phenomena,such as degenerate event horizon and time-periodic event horizon,are found.The applications of these solutions in modern cosmology and general relativity are expected.展开更多
In this article, we address the solution of the Einstein’s equations in the vacuum region surrounding a spherically symmetric mass distribution. There are two different types of mathematical solutions, depending on t...In this article, we address the solution of the Einstein’s equations in the vacuum region surrounding a spherically symmetric mass distribution. There are two different types of mathematical solutions, depending on the value of a constant of integration. These two types of solutions are analysed from a physical point of view. The comparison with the linear theory limit is also considered. This leads to a new solution, different from the well known one. If one considers the observational data in the weak field limit this new solution is in agreement with the available data. While the traditional Schwarzschild solution is characterized by a horizon at r=2GM/c2, no horizon exists in this new solution.展开更多
This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invari...This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invariant 1 s/s rate of time. This is the Fundamental Direction of Evolution, FDE. There is also an evolution down time dilation gradients, the Gravitational Direction of Evolution, GDE. These evolutions are gravity, which is the evolutionary force in time. Gravitational velocities are compensation for the difference in the rate of time, dRt, in a dilation field, and the dRtis equal to the compensatory velocity’s percentage of c, and is a measure of the force in time inducing the velocity. In applied force induced velocities, the dRt is a measure of the resistance in time to the induced velocity, which might be called “anti-gravity” or “negative gravity”. The two effects keep the continuum uniformly evolving forward at c. It is demonstrated that gravity is already a part of the electromagnetic field equations in way of the dRt element contained in the TDC velocity formula. Einstein’s energy formula is defined as a velocity formula and a modified version is used for charged elementary particle solutions. A time dilation-based derivation of the Lorentz force ties gravity directly to the electromagnetic field proving the unified field of gravity and the EMF. It is noted how we could possibly create gravity drives. This is followed by a discussion of black holes, proving supermassive objects, like massive black hole singularities, are impossible, and that black holes are massless Magnetospheric Eternally Collapsing Objects (MECOs) that are vortices in spacetime. .展开更多
In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. I...In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. In this article, starting from this correct Schwarzschild metric, I also propose corrections to the other traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics on the basis of the fact that these metrics should be equal to the correct Schwarzschild metric in the borderline case in which they reduce to the case described by this metric. In this way, we see that, like the correct Schwarzschild metric, also the correct Reissner-Nordstrøm, Kerr and Kerr-Newman metrics do not present any event horizon (and therefore do not present any black hole) unlike the traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics.展开更多
In the special theory of relativity, massive particles can travel at neither the speed of light c nor faster. Meanwhile, since the photon was quantized, many have thought of it as a point particle. How pointed? The id...In the special theory of relativity, massive particles can travel at neither the speed of light c nor faster. Meanwhile, since the photon was quantized, many have thought of it as a point particle. How pointed? The idea could be a mathematical device or physical simplification. By contrast, the preceding notion of wave-group duality has two velocities: a group velocity vg and a phase velocity vp. In light vp = vg = c;but it follows from special relativity that, in massive particles, vp > c. The phase velocity is the product of the two best measured variables, and so their product constitutes internal motion that travels, verifiably, faster than light. How does vp then appear in Minkowski space? For light, the spatio-temporal Lorentz invariant metric is s2=c2t2−x2−y2−z2, the same in whatever frame it is viewed. The space is divided into 3 parts: firstly a cone, symmetric about the vertical axis ct > 0 that represents the world line of a stationary particle while the conical surface at s = 0 represents the locus for light rays that travel at the speed of light c. Since no real thing travels faster than the speed of light c, the surface is also a horizon for what can be seen by an observer starting from the origin at time t = 0. Secondly, an inverted cone represents, equivalently, time past. Thirdly, outside the cones, inaccessible space. The phase velocity vp, group velocity vg and speed of light are all equal in free space, vp = vg = c, constant. By contrast, for particles, where causality is due to particle interactions having rest mass mo > 0, we have to employ the Klein-Gordon equation with s2=c2t2−x2−y2−z2+mo2c2. Now special relativity requires a complication: vp.vg = c2 where vg c and therefore vp > c. In the volume outside the cones, causality due to light interactions cannot extend beyond the cones. However, since vp > c and even vp >> c when wavelength λ is long, extreme phase velocities are then limited in their causal effects by the particle uncertainty σ, i.e. to vgt ± σ/ω, where ω is 展开更多
In this paper,we construct several kinds of new time-periodic solutions of the vacuum Einstein's field equations whose Riemann curvature tensors vanish,keep finite or take the infinity at some points in these spac...In this paper,we construct several kinds of new time-periodic solutions of the vacuum Einstein's field equations whose Riemann curvature tensors vanish,keep finite or take the infinity at some points in these space-times,respectively.The singularities of these new time-periodic solutions are investigated and some new physical phenomena are discovered.展开更多
In this paper, we extend Parikh' recent work to the Vaidya-de Sitter black hole which is non-stationary. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probabi...In this paper, we extend Parikh' recent work to the Vaidya-de Sitter black hole which is non-stationary. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability when the particle crosses the event horizon. From the tunnelling probability we also find a leading correction to the semiclassical emission rate.展开更多
Black hole is treated as 2 D membrane. Starting from the usual state equation of thermal radiation, the black hole entropy is technically computed, and the result that is proportional to the area of horizon is briefly...Black hole is treated as 2 D membrane. Starting from the usual state equation of thermal radiation, the black hole entropy is technically computed, and the result that is proportional to the area of horizon is briefly obtained.展开更多
Black holes are recognized by Newton’s gravitational theory and Einstein’s general relativity, but there is still a lack of understanding the spatial structure of events, especially the nature of event horizon. In t...Black holes are recognized by Newton’s gravitational theory and Einstein’s general relativity, but there is still a lack of understanding the spatial structure of events, especially the nature of event horizon. In this paper, a theoretical analysis is used to compare the structures of tropical cyclone in the atmosphere and black hole in the astronomy so that five results are: 1) Both of them share the similar spatial structure, with tropical cyclone and black hole having the outflow cloud shield and the horizon sphere in the central part, respectively, while four spiral material bands exist in the rotating plane around them;2) In theoretically, the energy density formed by the orthogonal interaction of the four spiral material bands is as times as the total kinetic energy of the head-on interaction;3) This region of high energy density can lead to the conversion from mass to energy and the creation of new physical states of matter, which is a black hole event;4) The outer horizon of a black hole is the outermost interface of events, or the orthogonal interaction interface of particles;5) High-speed plasma jets extended at the poles of the black hole are directly associated with the shear stress of orthogonal interaction.展开更多
This paper describes efficient data structures, namely the Indexed P-tree, Block P-tree, and Indexed-Block P-tree (or/P-tree, BP-tree, and IBP-tree, respectively, for short), for maintaining future events in a gener...This paper describes efficient data structures, namely the Indexed P-tree, Block P-tree, and Indexed-Block P-tree (or/P-tree, BP-tree, and IBP-tree, respectively, for short), for maintaining future events in a general purpose discrete event simulation system, and studies the performance of their event set algorithms under the event horizon principle. For comparison reasons, some well-known event set algorithms have been selected and studied, that is, the Dynamic-heap and the P-tree algorithms. To gain insight into the performance of the proposed event set algorithms and allow comparisons with the other selected algorithms, they are tested under a wide variety of conditions in an experimental way. The time needed for the execution of the Hold operation is taken as the measure for estimating the average time complexity of the algorithms. The experimental results show that the BP-tree algorithm and the IBP-tree algorithm behave very well with the event set of all the sizes and their performance is almost independent of the stochastic distributions.展开更多
Using the Hamilton Jacobi method, Hawking radiation from the apparent horizon of a dynamical Vaidya black hole is calculated. The black hole thermodynamics can be built successfully on the apparent horizon. If a relat...Using the Hamilton Jacobi method, Hawking radiation from the apparent horizon of a dynamical Vaidya black hole is calculated. The black hole thermodynamics can be built successfully on the apparent horizon. If a relativistic perturbation is given to the apparent horizon, a similar calculation can also lead to a purely thermal spectrum, which corresponds to a modified temperature from the former. The first law of thermodynamics can also be constructed successfully at a new supersurface which has a small deviation from the apparent horizon. When the event horizon is thought as such a deviation from the apparent horizon, the expressions of the characteristic position and temperature are consistent with the previous result that asserts that thermodynamics should be built on the event horizon. It is concluded that the thermodynamics should be constructed on the apparent horizon exactly while the event horizon thermodynamics is just one of the perturbations near the apparent horizon.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.10671124)
文摘In this paper,we develop a new algorithm to find the exact solutions of the Einstein's field equations.Time-periodic solutions are constructed by using the new algorithm.The singularities of the time-periodic solutions are investigated and some new physical phenomena,such as degenerate event horizon and time-periodic event horizon,are found.The applications of these solutions in modern cosmology and general relativity are expected.
文摘In this article, we address the solution of the Einstein’s equations in the vacuum region surrounding a spherically symmetric mass distribution. There are two different types of mathematical solutions, depending on the value of a constant of integration. These two types of solutions are analysed from a physical point of view. The comparison with the linear theory limit is also considered. This leads to a new solution, different from the well known one. If one considers the observational data in the weak field limit this new solution is in agreement with the available data. While the traditional Schwarzschild solution is characterized by a horizon at r=2GM/c2, no horizon exists in this new solution.
文摘This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invariant 1 s/s rate of time. This is the Fundamental Direction of Evolution, FDE. There is also an evolution down time dilation gradients, the Gravitational Direction of Evolution, GDE. These evolutions are gravity, which is the evolutionary force in time. Gravitational velocities are compensation for the difference in the rate of time, dRt, in a dilation field, and the dRtis equal to the compensatory velocity’s percentage of c, and is a measure of the force in time inducing the velocity. In applied force induced velocities, the dRt is a measure of the resistance in time to the induced velocity, which might be called “anti-gravity” or “negative gravity”. The two effects keep the continuum uniformly evolving forward at c. It is demonstrated that gravity is already a part of the electromagnetic field equations in way of the dRt element contained in the TDC velocity formula. Einstein’s energy formula is defined as a velocity formula and a modified version is used for charged elementary particle solutions. A time dilation-based derivation of the Lorentz force ties gravity directly to the electromagnetic field proving the unified field of gravity and the EMF. It is noted how we could possibly create gravity drives. This is followed by a discussion of black holes, proving supermassive objects, like massive black hole singularities, are impossible, and that black holes are massless Magnetospheric Eternally Collapsing Objects (MECOs) that are vortices in spacetime. .
文摘In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. In this article, starting from this correct Schwarzschild metric, I also propose corrections to the other traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics on the basis of the fact that these metrics should be equal to the correct Schwarzschild metric in the borderline case in which they reduce to the case described by this metric. In this way, we see that, like the correct Schwarzschild metric, also the correct Reissner-Nordstrøm, Kerr and Kerr-Newman metrics do not present any event horizon (and therefore do not present any black hole) unlike the traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics.
文摘In the special theory of relativity, massive particles can travel at neither the speed of light c nor faster. Meanwhile, since the photon was quantized, many have thought of it as a point particle. How pointed? The idea could be a mathematical device or physical simplification. By contrast, the preceding notion of wave-group duality has two velocities: a group velocity vg and a phase velocity vp. In light vp = vg = c;but it follows from special relativity that, in massive particles, vp > c. The phase velocity is the product of the two best measured variables, and so their product constitutes internal motion that travels, verifiably, faster than light. How does vp then appear in Minkowski space? For light, the spatio-temporal Lorentz invariant metric is s2=c2t2−x2−y2−z2, the same in whatever frame it is viewed. The space is divided into 3 parts: firstly a cone, symmetric about the vertical axis ct > 0 that represents the world line of a stationary particle while the conical surface at s = 0 represents the locus for light rays that travel at the speed of light c. Since no real thing travels faster than the speed of light c, the surface is also a horizon for what can be seen by an observer starting from the origin at time t = 0. Secondly, an inverted cone represents, equivalently, time past. Thirdly, outside the cones, inaccessible space. The phase velocity vp, group velocity vg and speed of light are all equal in free space, vp = vg = c, constant. By contrast, for particles, where causality is due to particle interactions having rest mass mo > 0, we have to employ the Klein-Gordon equation with s2=c2t2−x2−y2−z2+mo2c2. Now special relativity requires a complication: vp.vg = c2 where vg c and therefore vp > c. In the volume outside the cones, causality due to light interactions cannot extend beyond the cones. However, since vp > c and even vp >> c when wavelength λ is long, extreme phase velocities are then limited in their causal effects by the particle uncertainty σ, i.e. to vgt ± σ/ω, where ω is
基金supported in part by National Natural Science Foundation of China (Grant No.10971190)the Qiu-Shi Professor Fellowship from Zhejiang University,China
文摘In this paper,we construct several kinds of new time-periodic solutions of the vacuum Einstein's field equations whose Riemann curvature tensors vanish,keep finite or take the infinity at some points in these space-times,respectively.The singularities of these new time-periodic solutions are investigated and some new physical phenomena are discovered.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10373003, 10475013 and the State Key Development for Basic Research of China (Grant No 2003CB716300).Acknowledgement We would like to thank Guihua Tian for help.
文摘In this paper, we extend Parikh' recent work to the Vaidya-de Sitter black hole which is non-stationary. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability when the particle crosses the event horizon. From the tunnelling probability we also find a leading correction to the semiclassical emission rate.
文摘Black hole is treated as 2 D membrane. Starting from the usual state equation of thermal radiation, the black hole entropy is technically computed, and the result that is proportional to the area of horizon is briefly obtained.
文摘Black holes are recognized by Newton’s gravitational theory and Einstein’s general relativity, but there is still a lack of understanding the spatial structure of events, especially the nature of event horizon. In this paper, a theoretical analysis is used to compare the structures of tropical cyclone in the atmosphere and black hole in the astronomy so that five results are: 1) Both of them share the similar spatial structure, with tropical cyclone and black hole having the outflow cloud shield and the horizon sphere in the central part, respectively, while four spiral material bands exist in the rotating plane around them;2) In theoretically, the energy density formed by the orthogonal interaction of the four spiral material bands is as times as the total kinetic energy of the head-on interaction;3) This region of high energy density can lead to the conversion from mass to energy and the creation of new physical states of matter, which is a black hole event;4) The outer horizon of a black hole is the outermost interface of events, or the orthogonal interaction interface of particles;5) High-speed plasma jets extended at the poles of the black hole are directly associated with the shear stress of orthogonal interaction.
文摘This paper describes efficient data structures, namely the Indexed P-tree, Block P-tree, and Indexed-Block P-tree (or/P-tree, BP-tree, and IBP-tree, respectively, for short), for maintaining future events in a general purpose discrete event simulation system, and studies the performance of their event set algorithms under the event horizon principle. For comparison reasons, some well-known event set algorithms have been selected and studied, that is, the Dynamic-heap and the P-tree algorithms. To gain insight into the performance of the proposed event set algorithms and allow comparisons with the other selected algorithms, they are tested under a wide variety of conditions in an experimental way. The time needed for the execution of the Hold operation is taken as the measure for estimating the average time complexity of the algorithms. The experimental results show that the BP-tree algorithm and the IBP-tree algorithm behave very well with the event set of all the sizes and their performance is almost independent of the stochastic distributions.
基金Acknowledgements One of the authors, Han Ding would like to thank Xian-ming Liu, Chi-zhe Li for their helpful discussions. This research was supported by the National Natural Science Foundation of China (Grant Nos. 10773002 and 10875012) and the National Basic Research Program of China (Grant No. 2003CB716302). It was also supported by the Scientific Research Foundation of Beijing Normal University (Grant No. 105116).
文摘Using the Hamilton Jacobi method, Hawking radiation from the apparent horizon of a dynamical Vaidya black hole is calculated. The black hole thermodynamics can be built successfully on the apparent horizon. If a relativistic perturbation is given to the apparent horizon, a similar calculation can also lead to a purely thermal spectrum, which corresponds to a modified temperature from the former. The first law of thermodynamics can also be constructed successfully at a new supersurface which has a small deviation from the apparent horizon. When the event horizon is thought as such a deviation from the apparent horizon, the expressions of the characteristic position and temperature are consistent with the previous result that asserts that thermodynamics should be built on the event horizon. It is concluded that the thermodynamics should be constructed on the apparent horizon exactly while the event horizon thermodynamics is just one of the perturbations near the apparent horizon.